Revista Amazonia Digital

Vol. 4 Ntm. 2: e422 (2025)

https://doi.org/10.55873 /rad.v4i2.422 @ @
e-ISSN: 2810-8701

Universidad Nacional Amazoénica de Madre de Dios

Articulo original/ Original article

Analisis comparativo de arrays y listas enlazadas en Python y C#:
impacto en la eficiencia de memoria

Comparative Analysis of Arrays and Linked Lists in Python and C#:
Impact on Memory Efficiency

Aldo Alarcén-Sucasaca 1*/; Nestor Antonio Gallegos-Ramos !

1Universidad Nacional Amazoénica de Madre de Recibido: 31/03/2025
Dios, Puerto Maldonado, Pera Aceptado: 07/06/2025
Publicado: 25/07 /2025

*Autor de correspondencia: aalarcon@unamad.edu.pe

Resumen: Este articulo analiza el impacto en la eficiencia de memoria de arrays y listas enlazadas
en Python y C#. Implementaron ambas estructuras y se evaluaron tres operaciones sobre
colecciones de 10,000 elementos: acceso al centro, insercién y eliminacién. Los tiempos de
ejecucién se midieron con timeit en Python y Stopwatch en C# complementadas con la estimacién
del consumo de memoria. El analisis estadistico mediante ANOVA de dos factores permiti6
contrastar el efecto del lenguaje y de la estructura de datos. Los resultados muestran que los
arrays son sistemdticamente mas eficientes que las listas enlazadas en ambas plataformas. En el
acceso al centro, los arrays registraron tiempos casi constantes (0.0010 ms en Python y 0.0012 ms
en C#), superando ampliamente a las listas enlazadas gracias a su organizacién contigua en
memoria. También presentaron mejor desempefio en inserciones y eliminaciones intermedias. El
ANOVA evidenci6 que el lenguaje de programacién no influye significativamente en los tiempos
de ejecucién (p > 0.05), siendo la estructura de datos el principal factor del rendimiento; por ello,
los arrays constituyen la opcién mas eficiente en escenarios con accesos aleatorios y operaciones
intermedias, independientemente del lenguaje.

Palabras clave: arrays; C#; eficiencia de memoria; estructuras de datos; listas enlazadas;
programacién; Python

Abstract: This article analyzes the impact of arrays and linked lists on memory efficiency in
Python and C#. Both structures were implemented and three operations were evaluated on
collections of 10,000 elements: middle access, insertion, and deletion. Execution times were
measured using timeit in Python and Stopwatch in C#, complemented with an estimation of
memory consumption. Statistical analysis through a two-factor ANOVA was applied to contrast
the effect of the programming language and the data structure. The results show that arrays are
systematically more efficient than linked lists in both platforms. In central access, arrays exhibited
nearly constant execution times (0.0010 ms in Python and 0.0012 ms in C#), clearly outperforming
linked lists due to their contiguous memory organization. They also showed superior
performance in intermediate insertions and deletions. The ANOVA results indicated that the
programming language does not have a statistically significant effect on execution times (p >
0.05), whereas the data structure is the main determinant of performance; therefore, arrays
represent the most efficient option in scenarios dominated by random access and intermediate
operations, regardless of the programming language.

Keywords: arrays; C#; memory efficiency; data structures; linked lists; programming; Python

Cémo citar / Citation: Alarcén-Sucasaca, A. & Gallegos-Ramos, N. A. (2025). Andlisis comparativo de arrays y listas
enlazadas en Python y C#: impacto en la eficiencia de memoria. Revista Amazonia Digital, 4(2), e422.
https:/ /doi.org/10.55873 /rad.v4i2.422


https://doi.org/10.55873/rad.v4i2.422
https://doi.org/10.51252/rceyt.v1i1.269
https://doi.org/10.51252/rceyt.v1i1.269
https://doi.org/10.55873/rad.v4i2.422
https://creativecommons.org/licenses/by/4.0/deed.es
mailto:alarcon@unamad.edu.pe
https://orcid.org/0000-0003-2077-9472
https://orcid.org/0000-0003-1436-9207

Anadlisis comparativo de arrays y listas enlazadas en Python y C#: impacto en la eficiencia de memoria 2

1. Introduccidon

Las estructuras de datos son fundamentales en la informatica para optimizar algoritmos, reducir
la complejidad computacional y garantizar un uso eficiente de la memoria (Mrena et al., 2022).
Arrays y listas enlazadas representan dos enfoques distintos para almacenar y manipular
colecciones de datos.

Un array es una coleccién de elementos del mismo tipo almacenados en ubicaciones contiguas de
memoria lo que permite un acceso aleatorio eficiente mediante indices (Morita, 2004). Su principal
limitacién aparece en inserciones y eliminaciones intermedias, que requieren desplazar
elementos y generan sobrecarga en memoria temporal (Aoe et al., 1992).

Una lista enlazada esta formada por nodos que almacenan un valor y una referencia al siguiente
nodo (Gonzalez, 2020). Esto otorga flexibilidad para operaciones dindmicas como inserciones y
eliminaciones, pero a costa de mayor uso de memoria debido al almacenamiento de punteros y
de menor eficiencia en el acceso aleatorio (Banerjee & Kumar, 2022).

En lenguajes de alto nivel como Python y C#, los arrays se representan mediante estructuras
dindmicas (listas en Python y List<T> en C#) que permiten acceso directo por indice con alta
eficiencia en memoria contigua (“Extending Python Using NumPy,” 2019). Por el contrario, las
listas enlazadas introducen un mayor gasto de memoria al no garantizar contigtiidad y al requerir
referencias adicionales (Mrena et al., 2022).

Este trabajo tiene como objetivo comparar el impacto en la eficiencia de memoria de arrays y listas
enlazadas, implementados en dos lenguajes de programaciéon de uso extendido: Python, con
tipado dindmico e interpretacion (Chen et al., 2024); y C#, un lenguaje compilado y orientado a
objetos con fuerte integracién al entorno .NET (Syerov & Terletska, 2025).

2. Materiales y métodos
Lenguajes de programacion y configuracién

El estudio fue desarrollado en Python 3.12 y C# .NET 6.0. En Python se utiliz6 el médulo estandar
timeit, y en C# la clase Stopwatch, herramientas precisas para la medicién de tiempos de
ejecucion. Ademas, se midi6 el uso de memoria de cada estructura considerando la sobrecarga

de punteros en listas enlazadas y la asignacién contigua en arrays. Como se muestra en la Tabla
1.

Operaciones evaluadas
Se aplicaron tres operaciones sobre colecciones de 10,000 elementos:

e Acceso al elemento central.
e Insercién en la posicién central.
e FEliminacién del elemento central.

Estas operaciones permiten medir tanto la eficiencia temporal como la eficiencia de memoria en
escenarios de acceso y modificacion interna. Representados en la Figura 1 y la Figura 2.

Disefio e implementacion

En Python se utilizaron listas dindmicas (list) y una implementacién manual de lista enlazada. En
C#, se uso List<int> y una implementacién manual de LinkedList. Cada operacién se ejecut6 en
instancias nuevas para evitar efectos acumulativos y los resultados se promediaron.

Anilisis estadistico

Para determinar si las diferencias observadas en los tiempos de ejecucién y el uso de memoria
eran estadisticamente significativas, se aplicé un andlisis de varianza de dos factores (ANOVA).
Este método resulta adecuado en estudios comparativos porque permite evaluar
simultdneamente el efecto de dos variables independientes: el lenguaje de programacién (Python

Rev. Amaz. Digit. 4(2): e422 (2025). e-ISSN: 2810-8701



Alarcén-Sucasaca & Gallegos-Ramos

y C#) y la estructura de datos (array y lista enlazada), asi como la posible interaccién entre ambos

factores.

El ANOVA fue seleccionado por su idoneidad en disefios factoriales y porque proporciona un
marco s6lido para contrastar hip6tesis sobre medias poblacionales en presencia de multiples
condiciones experimentales. De esta forma, se busca establecer si las diferencias encontradas en
los tiempos de acceso, insercién y eliminacién responden a patrones consistentes y
estadisticamente verificables, mas alla de la variabilidad aleatoria.

3. Desarrollo

Comparacion de eficiencia entre Python y C#

Tabla 1. Comparacién de arrays y listas enlazadas en Python y C# con 10,000 elementos

.. Python - Array | Python - Lista enlazada C# - Array C# - Lista
Operacion (ms) enlazada
(ms) (ms)
(ms)
Acceso al centro 0.0010 0.2640 0.0012 0.1670
Insercién en el centro 0.0067 0.1128 0.0309 0.2654
Eliminacion en el 0.0255 0.2629 0.0213 0.1740
centro

Nota: Los valores representan promedios de ejecucion en milisequndos medidos sobre 10,000 elementos.
Las mediciones se realizaron con timeit en Python y Stopwatch en C#.

Analisis:

e Acceso al centro: Los arrays fueron mas rapidos en ambos lenguajes, con diferencias
minimas entre Python (0.0010 ms) y C# (0.0012 ms). Las listas enlazadas fueron
notablemente més lentas, sobre todo en Python (0.2640 ms).

e Insercién en el centro: En Python, los arrays fueron mas eficientes (0.0067 ms) frente a
listas enlazadas (0.1128 ms). En C#, tanto arrays como listas enlazadas fueron mas

costosos, destacando la penalizacién de memoria en la lista enlazada.

e Eliminacién en el centro: Los arrays mantuvieron mejor desempefio, aunque en C# las

listas enlazadas redujeron la diferencia en comparacién con Python.

Comparacion de rendimiento en Python

0.25 1

0.20 4

0.15 4

Tiempo (ms)

0.10 4

0.05 4

mmm Array (Python)

mmm Lista Enlazada (Python)

0.00
Acceso

Insercién
Operacion

Eliminacion

Figura 1. Rendimiento comparativo de arrays y listas enlazadas en Python

Rev. Amaz. Digit. 4(2): e422 (2025). e-ISSN: 2810-8701




Andlisis comparativo de arrays y listas enlazadas en Python y C#: impacto en la eficiencia de memoria 4

Nota. Los valores representan el tiempo promedio de ejecucién en milisegundos (ms) para
operaciones realizadas sobre una estructura de 10,000 elementos en Python. Se observa que el
array presenta un mejor desempefio en todas las operaciones evaluadas: acceso aleatorio,
insercién y eliminacién en el centro. Por el contrario, la lista enlazada resulta significativamente
maés lenta, especialmente en el acceso, debido a su naturaleza secuencial de recorrido nodo a
nodo.

Comparacion de rendimiento en C#

mm Array (C#)
0.25 1 e W Lista Enlazada (C#)

0.20 4

Tiempa (ms)
e
o
w

0.10

0.05 4

0.00
Acceso Insercion Eliminacion
Operacion

Figura 2. Rendimiento comparativo de arrays y listas enlazadas en C#

Nota. Los resultados muestran que los arrays en C# presentan mejor rendimiento que las listas
enlazadas en todas las operaciones evaluadas: acceso, insercién y eliminacién en el centro. Las
listas enlazadas resultan especialmente més lentas en inserciones, debido al costo del recorrido
secuencial y la gestion de referencias.

Diferenciales estructurales

{ndice

A
Y

Array 1 2 3 4 5

Lista
enlazada = ~ 3 F M

Figura 3. Representacion grafica de un array y una lista enlazada

Nota. La figura ilustra la diferencia estructural entre un array (almacenamiento contiguo con
acceso por indice) y una lista enlazada (nodos conectados mediante referencias). En el array, los
elementos estan ubicados en posiciones adyacentes, mientras que en la lista enlazada cada nodo
contiene un puntero al siguiente, reflejando su naturaleza no contigua.

Tabla 2. Comparacién estructural entre arrays y listas enlazadas

Caracteristica Array Lista enlazada
Acceso aleatorio O(1) - rapido O(n) - lento
Insercion / eliminacion O(n) - costo por desplazamiento O(n) - penalizacién al recorrer nodos
Uso de memoria Menor (almacenamiento contiguo) | Mayor (punteros adicionales)
Contigiiidad en memoria | Si No
Flexibilidad estructural Limitada (redimensionamiento) Alta (crecimiento dinamico)

Rev. Amaz. Digit. 4(2): e422 (2025). e-ISSN: 2810-8701



Alarcén-Sucasaca & Gallegos-Ramos 5

Nota. Los arrays demostraron mayor eficiencia de memoria gracias a la contigtiidad, lo que
impacta en un acceso mas rapido y en menor sobrecarga. Las listas enlazadas, aunque flexibles,
penalizan el rendimiento y el uso de memoria por la necesidad de referencias adicionales.

Analisis estadistico de los resultados ANOVA

Con el fin de validar la significancia de las diferencias observadas en los tiempos de ejecucion, se
aplicé un andlisis de varianza de dos factores (ANOVA), considerando como factores el lenguaje
de programacién (Python y C#) y la estructura de datos (array y lista enlazada).

Los resultados del ANOVA muestran que el lenguaje de programacién no tiene un efecto
significativo sobre los tiempos de ejecucion (F = 0.005, p = 0.944), lo que indica que las diferencias
entre Python y C# no son estadisticamente relevantes en este contexto. En contraste, el tipo de
estructura de datos si presentd un efecto altamente significativo (F = 40.84, p = 0.0002),
evidenciando que los arrays son consistentemente mds eficientes en términos de tiempo de
acceso, insercién y eliminacién respecto a las listas enlazadas. Finalmente, la interaccién entre
ambos factores no resulté significativa (F = 0.087, p = 0.776), lo que implica que el comportamiento
observado de las estructuras se mantiene de manera similar en ambos lenguajes. Representados
en la Figura 4.

Comparacion de Arrays y Listas enlazadas en Python y C# (10,000 elementos)

Estructura
0.25 . Array
e Lista

e e
= N
0 o

Tiempo de ejecucién (ms)
o
o
o

0.05

mml mm

Acceso Insercion Eliminacion
Operacion

0.00 -

Figura 4. Representacion grafica de un array y una lista enlazada.

En los tres tipos de operacion, los arrays superan ampliamente a las listas enlazadas en términos
de tiempo de ejecucion.

Las diferencias son tan marcadas que incluso con barras de error (desviacién estdndar), no hay
solapamiento entre arrays y listas, confirmando que el efecto de la estructura de datos es
consistente.

Esto refuerza los resultados del ANOVA, donde el tinico factor estadisticamente significativo fue
la estructura de datos (p < 0.01), mientras que ni la operacién ni la interaccién mostraron
significancia.

Tabla 3. Analisis e interpretacién

Factor F P Interpretacién
valor
Operacién 0.0906 | 0.9146 No hay diferencias §ignifi.c,ativa.s eptrell/as operaciones
(acceso, insercién, eliminacion).
Estructura (Array vs Lista Diferencia altamente significativa: la estructura de
32.63 | 0.0012 . .
enlazada) datos impacta en el rendimiento.
Interaccion (Operacioén x No significativa: el efecto de la estructura no depende
0.1423 | 0.8702 -
Estructura) de la operacién evaluada.

Rev. Amaz. Digit. 4(2): e422 (2025). e-ISSN: 2810-8701



Andlisis comparativo de arrays y listas enlazadas en Python y C#: impacto en la eficiencia de memoria 6

El factor mas determinante en los tiempos de ejecucion es la estructura de datos (array o lista
enlazada).

Ni el tipo de operacién (acceso/insercion/eliminacién) ni la interaccién operacién-estructura
explican diferencias significativas en este conjunto de datos.

Discusion

Los resultados obtenidos permiten establecer que la eficiencia de las estructuras de datos no
depende exclusivamente del lenguaje de programacién empleado, sino fundamentalmente del
modelo de almacenamiento y acceso que caracteriza a cada estructura. El ANOVA confirmé que
el tipo de estructura (array o lista enlazada) es el tinico factor estadisticamente significativo (p <

0.01), mientras que ni el lenguaje (Python o C#) ni la interaccién entre ambos factores influyeron
de manera relevante.

Esto resultados permiten comparar el rendimiento de arrays y listas enlazadas en Python y C#,
considerando operaciones de acceso, inserciéon y eliminacién en posiciones intermedias. En
términos generales, los arrays presentan una eficiencia superior en operaciones de acceso directo,
confirmando que la organizacién contigua en memoria facilita el uso de indices para lograr
tiempos préacticamente constantes (0.0010 ms en Python y 0.0012 ms en C#). En contraste, las listas
enlazadas muestran tiempos significativamente mayores (0.2640 ms en Python y 0.1670 ms en
C#), debido a la necesidad de recorrer secuencialmente los nodos hasta alcanzar la posiciéon
deseada.

De forma global, los datos confirman que los arrays son mas eficientes para operaciones de acceso
y, en la mayoria de los casos, también en inserciones y eliminaciones en posiciones intermedias
(Fetaji et al., 2012). No obstante, la comparacion entre Python y C# revela que el modelo de
ejecucion y las estrategias de manejo de memoria de cada lenguaje afectan la magnitud de las
diferencias. Asi, aunque la teoria sugiere que las listas enlazadas ofrecen ventajas en inserciones
y eliminaciones (Bae, 2019), en la préctica los resultados muestran que los arrays conservan mayor
eficiencia (Aoe et al., 1992) en ambos lenguajes bajo las condiciones evaluadas.

Estos hallazgos concuerdan con la teorfa clasica de estructuras de datos, donde los arrays
destacan por su acceso aleatorio en tiempo constante O(1) gracias a la asignacion contigua en
memoria, mientras que las listas enlazadas presentan un costo lineal O(n) al requerir recorrido
secuencial (Lokeshwar et al., 2022).

4. Conclusiones

Los resultados muestran a los arrays mas eficientes que las listas enlazadas en Python y C# para
las operaciones evaluadas (acceso, inserciéon y eliminaciéon en el centro). Esto sugiere que, en
escenarios donde predomina el acceso aleatorio y las operaciones intermedias, los arrays
constituyen la opcién mas recomendable en términos de tiempo de ejecucién y eficiencia de
memoria.

Eficiencia en acceso: Los arrays superan ampliamente a las listas enlazadas en ambas plataformas
para operaciones de acceso al centro. Los tiempos casi constantes en arrays (0.0010 ms en Python
y 0.0012 ms en C#) contrastan con los tiempos elevados de las listas enlazadas, lo que confirma
que la organizaciéon contigua en memoria es decisiva en la rapidez de acceso. Inserciones y
eliminaciones intermedias: Aunque la teoria plantea que las listas enlazadas son mas adecuadas
para inserciones y eliminaciones en posiciones intermedias, los resultados muestran lo contrario:
los arrays son més rdpidos en ambos lenguajes. Esto refleja que la sobrecarga de gestion de nodos
y memoria dindmica en listas enlazadas reduce su eficiencia practica. Influencia del lenguaje: El
andlisis estadistico confirma que el lenguaje (Python vs. C#) no tiene un efecto significativo sobre
los tiempos de ejecucién (p > 0.05). Esto implica que las diferencias observadas entre lenguajes
son marginales y no explican variaciones relevantes en el rendimiento.

Rev. Amaz. Digit. 4(2): e422 (2025). e-ISSN: 2810-8701



Alarcén-Sucasaca & Gallegos-Ramos 7

Los arrays constituyen la opcién mads eficiente en términos de tiempo y memoria,
independientemente del lenguaje de programacién y del tipo de operacién. La evidencia
estadistica refuerza que la eleccién de la estructura de datos es el factor critico para optimizar el
rendimiento en escenarios de manejo intensivo de datos.

Financiamiento
Ninguno.
Conflicto de intereses

Los autores declaran no tener ningtin conflicto de intereses.

Contribucién de autores

A. Alarcéon-Sucasaca: Conceptualizacién; Metodologia; Investigaciéon; Redacciéon - borrador
original; Redaccién - revision y edicién.

N. A. Gallegos-Ramos: Metodologia; Investigacion.

Referencias bibliograficas

Aoe, ]., Morimoto, K., & Sato, T. (1992). An efficient implementation of trie structures. Software:
Practice and Experience, 22(9), 695-721. https:/ /doi.org/10.1002/spe.4380220902

Bae, S. (2019). Linked Lists. In JavaScript Data Structures and Algorithms (pp. 179-192). Apress.
https:/ /doi.org/10.1007 /978-1-4842-3988-9_13

Banerjee, A., & Kumar, P. K. (2022). A New Vista of Performing Insertion and Deletion in Linked
Lists. International Journal of Computer Science and Mobile Computing, 11(7), 83-97.
https:/ /doi.org/10.47760/ijcsmc.2022.v11i07.008

Chen, Z., Chen, L., Yang, Y., Feng, Q., Li, X., & Song, W. (2024). Risky Dynamic Typing-related
Practices in Python: An Empirical Study. ACM Transactions on Software Engineering and
Methodology, 33(6), 1-35. https:/ /doi.org/10.1145/3649593

Extending Python Using NumPy. (2019). In Python® Machine Learning (pp. 19-38). Wiley.
https:/ /doi.org/10.1002/9781119557500.ch2

Fetaji, M., Ebibi, M., & Fetaji, B. (2012). Measuring Algorithms Performance in Dynamic Linked
List and Arrays. TEM Journal, 98-103. https:/ /doi.org/10.18421/TEM12-06

Gonzalez, A. ]J. (2020). Dynamically-Allocated Memory and Linked Lists. In Computer
Programming in C for Beginners (pp. 157-173). Springer International Publishing.
https:/ /doi.org/10.1007 /978-3-030-50750-3_11

Lokeshwar, B., Zaid, M. M., Naveen, S., Venkatesh, J., & Sravya, L. (2022). Analysis of Time and
Space Complexity of Array, Linked List and Linked Array(hybrid) in Linear Search
Operation. 2022 International Conference on Data Science, Agents & Artificial Intelligence
(ICDSAAI), 1-6. https:/ /doi.org/10.1109/ICDSA A155433.2022.10028872

Morita, K. (2004). Fast and compact updating algorithms of a double-array structure. Information
Sciences, 159(1-2), 53-67. https:/ /doi.org/10.1016,/50020-0255(03)00189-0

Rev. Amaz. Digit. 4(2): e422 (2025). e-ISSN: 2810-8701


https://doi.org/10.1002/spe.4380220902
https://doi.org/10.1007/978-1-4842-3988-9_13
https://doi.org/10.47760/ijcsmc.2022.v11i07.008
https://doi.org/10.1145/3649593
https://doi.org/10.1002/9781119557500.ch2
https://doi.org/10.18421/TEM12-06
https://doi.org/10.1007/978-3-030-50750-3_11
https://doi.org/10.1109/ICDSAAI55433.2022.10028872
https://doi.org/10.1016/S0020-0255(03)00189-0

Andlisis comparativo de arrays y listas enlazadas en Python y C#: impacto en la eficiencia de memoria 8

Mrena, M., Varga, M., & Kvassay, M. (2022). Experimental Comparison of Array-based and
Linked-based List Implementations. 2022 IEEE 16th International Scientific Conference on
Informatics (Informatics), 231-238. https:/ /doi.org/10.1109/Informatics57926.2022.10083495

SYEROV, Y., & TERLETSKA, K. (2025). ANALYZING THE INNOVATIVE ENGINEERING
TECHNOLOGY STACK. Herald of Khmelnytskyi National University. Technical Sciences,
349(2), 89-93. https:/ /doi.org/10.31891/2307-5732-2025-349-12

Rev. Amaz. Digit. 4(2): e422 (2025). e-ISSN: 2810-8701


https://doi.org/10.1109/Informatics57926.2022.10083495
https://doi.org/10.31891/2307-5732-2025-349-12

