Extraction and physical-chemical characterization of the tannic of the mahogany and cedar bark in the district of Tambopata, Madre de Dios
DOI:
https://doi.org/10.55873/racba.v1i1.150Keywords:
forest waste, solid-liquid extraction, forest industry, secondary metabolitesAbstract
The wood industry in the region of Madre de Dios, Peru, is one of the most important economic activities and produces a large amount of waste, including bark, potential sources of tannins. The objective was to extract and physicochemically characterize tannins from the bark of mahogany (Swietenia macrophylla) and cedar (Cedrela odorata) collected from mature trees, in localized populations of the district of Tambopata - Madre de Dios. The tannic extracts were obtained by successive extraction with saline aqueous solution, and subjected to analysis to determine their solubility, color, density, and tannic compound identification tests. The results showed that the mahogany bark presented a higher concentration of tannins than that of the cedar, reaching both 46% and 42%, respectively; in addition, the tannic extract of the cedar bark presented a density of 0.972 g/mL and that of mahogany 0.976 g/mL. In conclusion, mahogany and cedar bark are potential sources of pyrogallic-type tannins for the natural products industry.
References
AOAC. (2019). Official methods of analysis of the association official analytical chemistsAnalysis (21st ed.). Association of Official Analytical Chemist.
ACP. (2007). Manual de Reforestación: Especies Maderables Tradicionales (Editora Sibauste S.A. (ed.)). Autoridad del Canal de Panamá. https://www.jica.go.jp/project/spanish/panama/2515031E0/data/pdf/1-51_01.pdf
Alqethami, A., & Aldhebiani, A. (2021). Medicinal plants used in Jeddah, Saudi Arabia: Phytochemical screening. Saudi Journal of Biological Sciences, 28(1), 805-812. https://doi.org/10.1016/j.sjbs.2020.11.013
Ariyanto, D., Bengen, D., Prartono, T., & Wardiatno, Y. (2018). The relationship between content of particular metabolites of fallen mangrove leaves and the rate at which the leaves decompose over time. Biodiversitas, 19(3), 700-705. https://doi.org/10.13057/biodiv/d190304
Bindon, K., & Kennedy, J. (2011). Ripening-Induced Changes in Grape Skin Proanthocyanidins Modify Their Interaction with Cell Walls. Journal of Agricultural and Food Chemistry, 59(6), 2696–2707. https://doi.org/10.1021/jf1047207
Cheynier, V. (2005). Polyphenols in foods are more complex than often thought. The American Journal of Clinical Nutrition, 81(1), 223S-229S. https://doi.org/10.1093/ajcn/81.1.223S
Espinal-Corrales, N. (2009). Extracción y caracterización fisicoquímica del contenido tánico en la corteza de cinco especies forestales procedentes del departamento de Petén, aprovechando el subproducto de la industria de aserradero [Universidad de San Carlos de Guatemala]. http://biblioteca.usac.edu.gt/tesis/08/08_1114_Q.pdf
Espinosa, T., & Valle, D. (2020). Evaluación poblacional de Dipteryx micrantha en la cuenca del río Las Piedras, Madre de Dios (Perú). Revista Forestal del Perú, 35(3), 76. https://doi.org/10.21704/rfp.v35i3.1603
Falcão, L., & Araújo, M. (2018). Vegetable tannins used in the manufacture of historic leathers. Molecules, 23(5), 8-10. https://doi.org/10.3390/molecules23051081
Fraga-Corral, M., García-Oliveira, P., Pereira, A., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020). Technological application of tannin-based extracts. Molecules, 25(3), 1-27. https://doi.org/10.3390/molecules25030614
Guo, L., Qiang, T., Ma, Y., Ren, L., & Dai, T. (2021). Purification and characterization of hydrolysable tannins extracted from Coriaria nepalensis bark using macroporous resin and their application in gallic acid production. Industrial Crops and Products, 162, 113302. https://doi.org/10.1016/j.indcrop.2021.113302
Haslam, E. (2007). Vegetable tannins – Lessons of a phytochemical lifetime. Phytochemistry, 68(22–24), 2713–2721. https://doi.org/10.1016/j.phytochem.2007.09.009
Ikenyiri, P., Abowei, F., Ukpaka, C., & Amadi, S. (2019). Characterization and Physicochemical Properties of Wood Sawdust in Niger Area, Nigeria. SSRN Electronic Journal, 5(3), 190-197. https://doi.org/10.2139/ssrn.3407342
Isaza M., J. H. (2007). Taninos o polifenoles vegetales. Scientia Et Technica, 1(33), 13–18. https://revistas.utp.edu.co/index.php/revistaciencia/article/view/5817
Kato-Schwartz, C., de Sá-Nakanishi, A., Guidi, A., Gonçalves, G. de A., Bueno, F., Zani, B., de Mello, J., Bueno, P., Seixas, F., Bracht, A., & Peralta, R. (2020). Carbohydrate digestive enzymes are inhibited by Poincianella pluviosa stem bark extract: relevance on type 2 diabetes treatment. Clinical Phytoscience, 6(1), 0-10. https://doi.org/10.1186/s40816-020-00177-w
Kennedy, J., Hayasaka, Y., Vidal, S., Waters, E., & Jones, G. (2001). Composition of Grape Skin Proanthocyanidins at Different Stages of Berry Development. Journal of Agricultural and Food Chemistry, 49(11), 5348–5355. https://doi.org/10.1021/jf010758h
Neve-Ombra, M., D’Acierno, A., Nazzaro, F., Spigno, P., Riccardi, R., Zaccardelli, M., Pane, C., Coppola, R., & Fratianni, F. (2018). Alpha-amylase, α-glucosidase and lipase inhibiting activities of polyphenol-rich extracts from six common bean cultivars of Southern Italy, before and after cooking. International Journal of Food Sciences and Nutrition, 69(7), 824-834. https://doi.org/10.1080/09637486.2017.1418845
Olivas-Aguirre, F., Wall-Medrano, A., González-Aguilar, G., López-Díaz, J., Álvarez-Parrilla, E., de la Rosa, L., & Ramos-Jimenez, A. (2015). Taninos hidrolizables; bioquímica, aspectos nutricionales y analíticos y efectos en la salud. Nutrición Hospitalaria, 31(1), 55–66. https://dx.doi.org/10.3305/nh.2015.31.1.7699
Oliveira, A., Soares-Filho, B., Costa, M., Lima, L., Garcia, R., Rajão, R., & Carvalho-Ribeiro, S. (2019). Bringing economic development for whom? An exploratory study of the impact of the Interoceanic Highway on the livelihood of smallholders in the Amazon. Landscape and Urban Planning, 188(May), 171-179. https://doi.org/10.1016/j.landurbplan.2019.04.025
Saravia, J., Cano, T., Chávez, B., Cano, E., & Cerezo, O. (2002). Extracción y caracterización de taninos en conterza de 3 especies forestales cultivadas en Guatemala, Pino ocote (Pinus oocarpa Schiede), Encino negro (Quercus brachystachys Benth) y Aliso común (Alnus jorulensis HBK.). Una alternativa de desarrollo agroi [Universidad de San Carlos de Guatemala]. https://digi.usac.edu.gt/bvirtual/informes/puidi/INF-2002-039.pdf
Schofield, P., Mbugua, D., & Pell, A. (2001). Analysis of condensed tannins: a review. Animal Feed Science and Technology, 91(1–2), 21–40. https://doi.org/10.1016/S0377-8401(01)00228-0
Lock, O. (1997). Colorantes Naturales. In Fondo Editorial Pontificia Universidad Católica del Perú.
Thakur, M., Bhattacharya, S., Khosla, P., & Puri, S. (2019). Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants, 12, 1-12. https://doi.org/10.1016/j.jarmap.2018.11.004
Torchio, F., Cagnasso, E., Gerbi, V., & Rolle, L. (2010). Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas. Analytica Chimica Acta, 660(1–2), 183–189. https://doi.org/10.1016/j.aca.2009.10.017
Valencia, C. (1995). Fundamentos de fitoquímica (1° edición). Editorial Trillas.
Villena, C. (2006). Métodos de investigación científica y tecnológica. UNSAAC.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Rosel Quispe-Herrera, Yoni Fernández-Herrera, Leoncio Solis-Quispe, Yolanda Paredes-Valverde
This work is licensed under a Creative Commons Attribution 4.0 International License.