Supervised data mining techniques for the analysis of the academic performance of the students of the Universidad Nacional amazónica de Madre de Dios

Authors

DOI:

https://doi.org/10.55873/racba.v1i2.190

Keywords:

CRISP, data mining, Support Vector Machines, association rules, predictive techniques

Abstract

The purpose of this study was to identify the supervised data mining technique with the best performance for the analysis of the academic performance of university students. The non-experimental cross-sectional design was chosen. The initial data set for the experiments consisted of 17,771 records of academic processes, after preprocessing a final data set of 17,035 records were obtained. The data mining methodology used was Knowledge Discovery in Databases (KDD). Binary logistic regression techniques, Classification and Regression Trees (CART), C4.5, Support Vector Machines, and K-Nearest Neighbors were used. The results show that the C5.0 algorithm obtains an accuracy of 93%, AUC of 0.9797 and a training time of 0.87 seconds, is the most efficient in relation to the other algorithms compared.

References

Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students’ performance using educational data mining. Computers & Education, 113, 177–194. https://doi.org/10.1016/J.COMPEDU.2017.05.007

Enke, D., & Thawornwong, S. (2005). The use of data mining and neural networks for forecasting stock market returns. Expert Systems with Applications, 29(4), 927–940. https://doi.org/10.1016/J.ESWA.2005.06.024

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). Knowledge Discovery and Data Mining: Towards a Unifying Framework.

Garbanzo, G. M. (2007). Factores asociados al rendimiento académico en estudiantes universitarios. Revista Mexicana de Orientación Educativa, 31(1), 1–25. https://doi.org/10.31206/rmdo072018

Gironés, J., Casas, J., Minguillón, J., & Caihuelas, R. (2017). Minería de datos: modelos y algoritmos (UOC (ed.); Primera).

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. In Data Mining: Concepts and Techniques. Elsevier Inc. https://doi.org/10.1016/C2009-0-61819-5

Khor, E. T. (2022). A data mining approach using machine learning algorithms for early detection of low-performing students. International Journal of Information and Learning Technology, 39(2), 122–132. https://doi.org/10.1108/IJILT-09-2021-0144

Landis, J. R., & Koch, G. G. (1977). An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics, 33(2), 363. https://doi.org/10.2307/2529786

Lemay, D. J., Baek, C., & Doleck, T. (2021). Comparison of learning analytics and educational data mining: A topic modeling approach. Computers and Education: Artificial Intelligence, 2, 100016. https://doi.org/10.1016/J.CAEAI.2021.100016

Nabil, A., Seyam, M., & Elfetouh, A. A. (2022). Predicting students’ academic performance using machine learning techniques: a literature review. International Journal of Business Intelligence and Data Mining, 20(4), 456. https://doi.org/10.1504/IJBIDM.2022.123214

Norabuena, R. (2011). UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Universidad Nacional Mayor de San Marcos.

Rosado Gómez, A. A., & Verjel Ibáñez, A. (2015). Minería de datos aplicada a la demanda del transporte aéreo en Ocaña, Norte de Santander. Tecnura, 19(45), 101–113. https://doi.org/10.14483/UDISTRITAL.JOUR.TECNURA.2015.3.A08

Trakunphutthirak, R., & Lee, V. C. S. (2021). Application of Educational Data Mining Approach for Student Academic Performance Prediction Using Progressive Temporal Data: Https://Doi.Org/10.1177/07356331211048777, 60(3), 742–776. https://doi.org/10.1177/07356331211048777

Valcárcel, V. (2004). DATA MINING Y EL DESCUBRIMIENTO DEL CONOCIMIENTO (1)-9993 (electrónico). Revista de La Facultad de Ingeniería Industrial, 7(2), 1810.

Yağcı, M. (2022). Educational data mining: prediction of students’ academic performance using machine learning algorithms. Smart Learning Environments, 9(1). https://doi.org/10.1186/S40561-022-00192-Z

UNAMAD

Published

2022-07-25

How to Cite

Ulloa-Gallardo, N., Holgado-Apaza, L. A., Vílchez-Navarro, Y., & Quispe-Barra, D. R. (2022). Supervised data mining techniques for the analysis of the academic performance of the students of the Universidad Nacional amazónica de Madre de Dios. Revista Amazónica De Ciencias Básicas Y Aplicadas, 1(2), e190. https://doi.org/10.55873/racba.v1i2.190