Soil arthropods in agroforestry systems of the Inambari district in Madre de Dios
DOI:
https://doi.org/10.55873/racba.v1i2.192Keywords:
macroarthropods, agroforestry system, soil monolithAbstract
In the present exploratory study carried out in the Inambari district of the department of Madre de Dios in Peru, the population of macro arthropods was evaluated in 20 plots with different types of agroforestry systems and with different ages, which were classified into three groups by age, and by type of agroforestry system. In each plot, the soil macro arthropods were collected from six soil monoliths that had the following dimensions: 25 cm x 25 cm x 30 cm, preserving the individuals in 95% alcohol, to later identify them and report them in number of individuals/m2. 3046 individuals were collected, finding that the most important orders at the level of the entire study area were: Haplotaxida, Coleoptera, Hymenoptera, Dictyoptera and Isoptera with more than 100 individuals per square meter. Earthworms were the most dominant species in agroforestry systems 1 and 3, while in agroforestry system 3 Isoptera dominated. In the oldest agroforestry systems the Isoptera dominated while in the youngest systems the Haplotaxids.
References
Anderson, J. M., & Ingram, J. S. I. (1993). Tropical soil biology and fertility: A handbook of methods (2nd ed.). Wallingford: CAB International.
Brussaard, L., de Ruiter, P. C., & Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment, 121(3), 233–244. https://doi.org/10.1016/j.agee.2006.12.013
de Barros Ferraz, S. F., Vettorazzi, C. A., Theobald, D. M., & Ramos Ballester, M. V. (2005). Landscape dynamics of Amazonian deforestation between 1984 and 2002 in central Rondônia, Brazil: assessment and future scenarios.
Forest Ecology and Management, 204(1), 69–85. https://doi.org/10.1016/j.foreco.2004.07.073
de Mendiburu, F. (2021). Agricolae: Statistical Procedures for Agricultural Research. Agricolae. https://rdrr.io/cran/agricolae/
Equipo central R. (2018). R: Un lenguaje y entorno para la computación estadística. R Fundación Para La Computación Estadística, Viena, Austria. http://www.r-project.org
Gómez Cardozo, E., Mavisoy Muchavisoy, H., Rocha Silva, H., Corrêa Zelarayán, M. L., Fernandes Alves Leite, M., Rousseau, G. X., & Gehring, C. (2015). Species richness increases income in agroforestry systems of eastern Amazonia. Agroforestry Systems, 89(5), 901–916. https://doi.org/10.1007/s10457-015-9823-9
Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5(3), 299. https://doi.org/10.2307/1390807
Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583. https://doi.org/10.2307/2280779
Lavelle, P. (2002). Functional domains in soils. Ecological Research, 17(4), 441–450. https://doi.org/10.1046/j.1440-1703.2002.00509.x
Le Tourneau, F.-M. (2004). Jusqu’au bout de la forêt ? Causes et mécanismes de la déforestation en Amazonie brésilienne. Mappemonde, 75, 1–25. https://shs.hal.science/halshs-00007050/document
Marichal, R., Grimaldi, M., Feijoo M., A., Oszwald, J., Praxedes, C., Ruiz Cobo, D. H., del Pilar Hurtado, M., Desjardins, T., Silva Junior, M. L. da, Silva Costa, L. G. da, Miranda, I. S., Delgado Oliveira, M. N., Brown, G. G., Tsélouiko, S., Martins, M. B., Decaëns, T., Velasquez, E., & Lavelle, P. (2014). Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Applied Soil Ecology, 83, 177–185. https://doi.org/10.1016/j.apsoil.2014.05.006
Mathieu, J., Rossi, J.-P., Grimaldi, M., Mora, P., Lavelle, P., & Rouland, C. (2004). A multi-scale study of soil macrofauna biodiversity in Amazonian pastures. Biology and Fertility of Soils, 40(5), 300–305. https://doi.org/10.1007/s00374-004-0777-8
Menta, C., & Remelli, S. (2020). Soil Health and Arthropods: From Complex System to Worthwhile Investigation. Insects, 11(1), 54. https://doi.org/10.3390/insects11010054
N’Woueni, D. K., & Gaoue, O. G. (2022). Plant Diversity Increased Arthropod Diversity and Crop Yield in Traditional Agroforestry Systems but Has No Effect on Herbivory. Sustainability, 14(5), 2942. https://doi.org/10.3390/su14052942
Nair, P. K. R., Gordon, A. M., & Mosquera-Losada, R. M. (2008). Agroforestry. In Encyclopedia of Ecology (pp. 101–110). Elsevier. https://doi.org/10.1016/B978-008045405-4.00038-0
Peña, J., Alegre, J., & Bardales, R. (2018). Efecto de la riqueza de las especies cultivadas en la sustentabilidad de los sistemas agroforestales en la amazonia sur del Perú. Ecosistemas, 27(3), 87–95. https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/1522#:~:text=Se encontró que el sistema,porque tienen más de 10
Prayogo, C., Sholehuddin, N., Putra, E. Z. H. S., & Rachmawati, R. (2019). Soil macrofauna diversity and structure under different management of pine-coffee agroforestry system. Journal of Degraded and Mining Lands Management, 6(3), 1727–1736. https://doi.org/10.15243/jdmlm.2019.063.1727
Rossi, J. P., Celini, L., Mora, P., Mathieu, J., Lapied, E., Nahmani, J., Ponge, J.-F., & Lavelle, P. (2010). Decreasing fallow duration in tropical slash-and-burn agriculture alters soil macroinvertebrate diversity: A case study in southern French Guiana. Agriculture, Ecosystems & Environment, 135(1–2), 148–154. https://doi.org/10.1016/j.agee.2009.08.012
Schober, P., & Vetter, T. R. (2020). Nonparametric Statistical Methods in Medical Research. Anesthesia & Analgesia, 131(6), 1862–1863. https://doi.org/10.1213/ANE.0000000000005101
Siegel, S., & Castellan, N. J. (1988). Nonparametric Statistics for the Behavioral Sciences (2nd ed.). Ilustrada.
Suárez Salazar, J. C., Durán Bautista, E. H., & Rosas Patiño, G. (2015). Macrofauna edáfica asociada a sistemas agroforestales en la Amazonia Colombiana. Acta Agronómica, 64(3), 214–220. https://doi.org/10.15446/acag.v64n3.38033
Tauro, T. P., Mtambanengwe, F., Mpepereki, S., & Mapfumo, P. (2021). Soil macrofauna response to integrated soil fertility management under maize monocropping in Zimbabwe. Heliyon, 7(12), e08567. https://doi.org/10.1016/j.heliyon.2021.e08567
Tsufac Azembouh, R., Awazi Nyong, P., erima Bernard, P. K. Y., & Enang Roger, K. (2021). Contribution of soil macro-fauna to soil fertility improvement in cocoa-based (Theobroma cacao) agroforestry systems in the Littoral Region of Cameroon: Examining cocoa farmers indigenous knowledge. African Journal of Agricultural Research, 17(4), 522–531. https://doi.org/10.5897/AJAR2020.15394
Villanueva-López, G., Lara-Pérez, L. A., Oros-Ortega, I., Ramírez-Barajas, P. J., Casanova-Lugo, F., Ramos-Reyes, R., & Aryal, D. R. (2019). Diversity of soil macro-arthropods correlates to the richness of plant species in traditional agroforestry systems in the humid tropics of Mexico. Agriculture, Ecosystems & Environment, 286, 106658. https://doi.org/10.1016/j.agee.2019.106658
Wickham, H. (2009). ggplot2. In Elegant Graphics for Data Analysis (1st ed., p. 213). Springer New York. https://doi.org/10.1007/978-0-387-98141-3
Zulu, S. G., Motsa, N. M., Sithole, N. J., Magwaza, L. S., & Ncama, K. (2022). Soil Macrofauna Abundance and Taxonomic Richness under Long-Term No-Till Conservation Agriculture in a Semi-Arid Environment of South Africa. Agronomy, 12(3), 722. https://doi.org/10.3390/agronomy12030722
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Joel Peña-Valdeiglesias, Rembrandt Canahuire-Robles
This work is licensed under a Creative Commons Attribution 4.0 International License.