El Incremento de la Deforestación en Madre de Dios, Durante la Pandemia del COVID-19

Autores/as

DOI:

https://doi.org/10.55873/rba.v2i1.237

Palabras clave:

deforestación, políticas públicas forestales, tala ilegal, vegetación

Resumen

La deforestación genera múltiples problemas a la humanidad, siendo un motivo fundamental la restauración de estos biomas críticos. En este estudio, evaluamos cuatro líneas de tiempo, desde 2018 al 2021. Utilizando datos longitudinales de sensores remotos, en la Región de Madre de Dios. El estudio se realizó en un área de 85 301,00 km2, al sur oriente del territorio peruano. Utilizando imágenes de satélite Landsat 8 del sensor OLI, en los softwares ENVI ESRI© y ArcGis ESRI©, con sus distintos paquetes y herramientas de análisis. Validando las imágenes con imágenes de alta resolución de los satélite SPOT, que fue lanzado en 1986 y el satélite PlanetScope (PS2) lanzado el 2014, se definieron los patrones de cobertura del uso del suelo y obteniendo las clasificaciones para el análisis y cuantificación de la información. Llegando a la conclusión que la pandemia fue un factor determinante en la tendencia de la deforestación amazónica, presentando una disminución en la perdida de los bosques en el año 2020.

Citas

Aide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., Bonilla-Moheno, M., Riner, G., Andrade-Núñez, M. J., & Muñiz, M. (2013). Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica, 45(2), 262-271.

https://doi.org/10.1111/J.1744-7429.2012.00908.X

Alarcón, G., Canahuire Robles, R. R., Guevara Duarez, F. M., Rodríguez Achata, L., Gallegos Chacón, L. E., & Garate-Quispe, J. (2021). Dynamics of forest loss in the southeast of the Peruvian Amazon: A case study in Madre de Dios. Ecosistemas, 30(2), 1-11. https://doi.org/10.7818/ECOS.2175

Alarcón, G., Díaz, J., Vela, M., García, M., & Gutiérrez, J. (2016). Deforestación en el sureste de la amazonia del Perú entre los años 1999 - 2013; caso Regional de Madre de Dios (Puerto Maldonado – Inambari). Revista de Investigaciones Altoandinas - Journal of High Andean Research, 18(3), 319-330. https://doi.org/10.18271/ria.2016.221

Asner, G. P., & Tupayachi, R. (2017). Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environmental Research Letters, 12(9), 094004. https://doi.org/10.1088/1748-9326/AA7DAB

Azari, M., Billa, L., & Chan, A. (2022). Multi-temporal analysis of past and future land cover change in the highly urbanized state of Selangor, Malaysia. Ecological Processes, 11(1), 2. https://doi.org/10.1186/s13717-021-00350-0

Baez, S., Dueñas, H., Mamani, J., & Garate, J. (2017). Flora y vegetación de la Microcuenca Chonta , distrito Tambopata y Laberinto , Departamento de Madre de Dios – Perú . 1, 1-5.

Barima, Y. S. S., Kouakou, A. T. M., Bamba, I., Sangne, Y. C., Godron, M., Andrieu, J., & Bogaert, J. (2016). Cocoa crops are destroying the forest reserves of the classified forest of Haut-Sassandra (Ivory Coast). Global Ecology and Conservation, 8, 85-98. https://doi.org/10.1016/j.gecco.2016.08.009

Boca, T., & Rodríguez, G. (2012). Métodos estadísticos de la evaluación de la exactitud de productos derivados de sensores remotos Instituto de Clima y Agua, INTA Castelar. Instituto Nacional de Tecnología Agropecuaria. https://inta.gob.ar/documentos/metodos-estadisticos-de-la-evaluacion-de-la-exactitud-de-productos-derivados-de-sensores-remotos

Bocco, G. (1998). Naturaleza y sociedad. escalas de espacio y tiempo. Revista Ciencias UNAM, 51. http://www.ejournal.unam.mx/cns/no51/CNS05112.pdf

Borràs, J., Delegido, J., Pezzola, A., Pereira, M., Morassi, G., & Camps-Valls, G. (2017). Clasificación de usos del suelo a partir de imágenes Sentinel-2. 55-66. https://doi.org/https://doi.org/10.4995/raet.2017.7133 Clasificación

Chávez Michaelsen, A., Huamani Briceño, L., Fernandez Menis, R., Bejar Chura, N., Valera Tito, F., Perz, S., Brown, I., Domínguez Del Aguila, S., Pinedo Mora, R., & Alarcón Aguirre, G. (2013). Regional Deforestation Trends within Local Realities: Land-Cover Change in Southeastern Peru 1996–2011. Land, 2(2), 131-157. https://doi.org/10.3390/land2020131

Chuvieco, E. (2002). Teledeteccion Ambiental. La observación de la Tierra desde el Espacio.pdf (septiembre). https://drive.google.com/file/d/0B0KUmy_fthbuX09sUE9RejJJX1U/view

Coomes, O. T., Kalacska, M., Takasaki, Y., Abizaid, C., & Grupp, T. (2022). Smallholder agriculture results in stable forest cover in riverine Amazonia. Environmental Research Letters, 17(1), 014024. https://doi.org/10.1088/1748-9326/ac417c

Coppin, P. R., & Bauer, M. E. (1994). Processing of Multitemporal Landsat TM Imagery to Optimize Extraction of Forest Cover Change Features. IEEE Transactions on Geoscience and Remote Sensing, 32(4), 918-927. https://doi.org/10.1109/36.298020

Delaroche, M., Le Tourneau, F.-M., & Daugeard, M. (2022). How vegetation classification and mapping may influence conservation: The example of Brazil’s Native Vegetation Protection Law. Land Use Policy, 122, 106380. https://doi.org/10.1016/j.landusepol.2022.106380

Dourojeanni, M. (2020). Impactos ambientales de la pandemia en el Perú. SPDA ACTUALIDAD

AMBIENTAL. https://www.actualidadambiental.pe/opinion-impactos-ambientales-de-la-pandemia-en-el-peru/

Dozier, J. (1989). Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sensing of Environment, 28(C), 9-22. https://doi.org/10.1016/0034-4257(89)90101-6

Elmes, A., Ipanaqué, J. G. Y., Rogan, J., Cuba, N., & Bebbington, A. (2014). Mapping licit and illicit mining activity in the Madre de Dios region of Peru. http://dx.doi.org/10.1080/2150704X.2014.973080, 5(10), 882-891. https://doi.org/10.1080/2150704X.2014.973080

Enaruvbe, G. O., Keculah, K. M., Atedhor, G. O., & Osewole, A. O. (2019). Armed conflict and mining induced land-use transition in northern Nimba County, Liberia. Global Ecology and Conservation, 17, e00597. https://doi.org/10.1016/J.GECCO.2019.E00597

Espejo, J. C., Messinger, M., Román-Dañobeytia, F., Ascorra, C., Fernandez, L. E., & Silman, M. (2018). Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective. Remote Sensing 2018, Vol. 10, Page 1903, 10(12), 1903. https://doi.org/10.3390/RS10121903

Forzza, R. C., Baumgratz, J. F. A., Bicudo, C. E. M., Canhos, D. A. L., Carvalho, A. A., Coelho, M. A. N., Costa, A. F., Costa, D. P., Hopkins, M. G., Leitman, P. M., Lohmann, L. G., Lughadha, E. N., Maia, L. C., Martinelli, G., Menezes, M., Morim, M. P., Peixoto, A. L., Pirani, J. R., Prado, J., … Zappi, D. C. (2012). New Brazilian Floristic List Highlights Conservation Challenges. BioScience, 62(1), 39-45. https://doi.org/10.1525/BIO.2012.62.1.8

H.C., P., & M., M. (2013). Contexto de REDD+ en Perú: motores, actores e instituciones. En Contexto de REDD+ en Perú: motores, actores e instituciones. Center for International Forestry Research (CIFOR). https://doi.org/10.17528/cifor/004226

Hansen, M. C., Krylov, A., Tyukavina, A., Potapov, P. V., Turubanova, S., Zutta, B., Ifo, S., Margono, B., Stolle, F., & Moore, R. (2016). Humid tropical forest disturbance alerts using Landsat data. Environmental Research Letters, 11(3), 034008. https://doi.org/10.1088/1748-9326/11/3/034008

Hanson, T. (2018). Biodiversity conservation and armed conflict: a warfare ecology perspective. Annals of the New York Academy of Sciences, 1429(1), 50-65. https://doi.org/10.1111/NYAS.13689

Heinrich, V. H. A., Dalagnol, R., Cassol, H. L. G., Rosan, T. M., de Almeida, C. T., Silva Junior, C. H. L., Campanharo, W. A., House, J. I., Sitch, S., Hales, T. C., Adami, M., Anderson, L. O., & Aragão, L. E. O. C. (2021). Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nature Communications 2021 12:1, 12(1), 1-11. https://doi.org/10.1038/s41467-021-22050-1

Hilty, J., Worboys, G. L., Keeley, A., Woodley, S., Lausche, B. J., Locke, H., Carr, M., Pulsford, I., Pittock, J., White, J. W., Theobald, D. M., Levine, J., Reuling, M., Watson, J. E. M., Ament, R., & Tabor, G. M. (2020). Guidelines for conserving connectivity through ecological networks and corridors. Guidelines for conserving connectivity through ecological networks and corridors. https://doi.org/10.2305/IUCN.CH.2020.PAG.30.EN

Houghton, R. A., Byers, B., & Nassikas, A. A. (2015). A role for tropical forests in stabilizing atmospheric CO2. Nature Climate Change 2015 5:12, 5(12), 1022-1023. https://doi.org/10.1038/nclimate2869

Hubbell, S. P., He, F., Condit, R., Borda-de-Água, L., Kellner, J., & Ter Steege, H. (2008). How many tree species are there in the Amazon and how many of them will go extinct? Proceedings of the National Academy of Sciences of the United States of America, 105(SUPPL. 1), 11498-11504. https://doi.org/10.1073/PNAS.0801915105/ASSET/B61C7372-7CAA-486A-BE2E-68D929C5589D/ASSETS/GRAPHIC/ZPQ9990837710007.JPEG

Hudson, W. D., & Ramon, C. W. (1987). Correct Formulation of the Kappa Coefficient of Agreement.

(April), 421-422.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2

INEI, I. N. de E. e. (2015). Perú : Estimaciones y Proyecciones de Población Total y Edades, según Departamento , Provincia y Distrito , 2005-2015. Boletin especial N° 21, 2005-2015. https://doi.org/BNP 201016108

Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). Characterization of the landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogrammetric Engineering and Remote Sensing, 72(10), 1179-1188. https://doi.org/10.14358/PERS.72.10.1179

Kalamandeen, M., Gloor, E., Mitchard, E., Quincey, D., Ziv, G., Spracklen, D., Spracklen, B., Adami, M., Aragaõ, L. E. O. C., & Galbraith, D. (2018). Pervasive Rise of Small-scale Deforestation in Amazonia. Scientific Reports 2018 8:1, 8(1), 1-10. https://doi.org/10.1038/s41598-018-19358-2

Kennedy, R. E., Andréfouët, S., Cohen, W. B., Gómez, C., Griffiths, P., Hais, M., Healey, S. P., Helmer, E. H., Hostert, P., Lyons, M. B., Meigs, G. W., Pflugmacher, D., Phinn, S. R., Powell, S. L., Scarth, P., Sen, S., Schroeder, T. A., Schneider, A., Sonnenschein, R., … Zhu, Z. (2014). Bringing an ecological view of change to Landsat-based remote sensing. Frontiers in Ecology and the Environment, 12(6), 339-346. https://doi.org/10.1890/130066

Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159-174. https://dionysus.psych.wisc.edu/iaml/pdfs/landis_1977_kappa.pdf

McNeely, J. A. (2003). Conserving forest biodiversity in times of violent conflict. Oryx, 37(2), 142-152. https://doi.org/10.1017/S0030605303000334

Montoya-Zumaeta, J. G., Wunder, S., Rojas, E., & Duchelle, A. E. (2022). Does REDD+ Complement Law Enforcement? Evaluating Impacts of an Incipient Initiative in Madre de Dios, Peru. Frontiers in Forests and Global Change, 5, 111. https://doi.org/10.3389/FFGC.2022.870450/BIBTEX

Morales, L. (2017). Fragmentación del Paisaje en el Municipio de Tenancingo, Estado de México. Universidad Autónoma del Estado de México.

Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 2000 403:6772, 403(6772), 853-858. https://doi.org/10.1038/35002501

Ordway, E. M. (2015). Political shifts and changing forests: Effects of armed conflict on forest conservation in Rwanda. Global Ecology and Conservation, 3, 448-460. https://doi.org/10.1016/J.GECCO.2015.01.013

Pereira, H. M., Navarro, L. M., & Martins, I. S. (2012). Global Biodiversity Change: The Bad, the Good, and the Unknown. https://doi.org/10.1146/annurev-environ-042911-093511, 37, 25-50. https://doi.org/10.1146/ANNUREV-ENVIRON-042911-093511

Petersen, R., Davis, C., Herold, M., & De Sy, V. (2018). Tropical forest monitoring: Exploring the gaps between what is required and what is possible for REDD+ and other initiatives. En ENDING TROPICAL DEFORESTATION: A STOCK-TAKE OF PROGRESS AND CHALLENGES. World Resources Institute. https://www.cifor.org/knowledge/publication/6948/

Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riédi, J. C., & Frey, R. A. (2003). The MODIS cloud products: Algorithms and examples from terra. IEEE Transactions on Geoscience and Remote Sensing, 41(2 PART 1), 459-472. https://doi.org/10.1109/TGRS.2002.808301

Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. S., Broadbent, E. N., Chazdon, R. L., Craven, D., De Almeida-

Cortez, J. S., Cabral, G. A. L., De Jong, B. H. J., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M., … Rozendaal, D. M. A. (2016). Biomass resilience of Neotropical secondary forests. Nature 2016 530:7589, 530(7589), 211-214. https://doi.org/10.1038/nature16512

Potapov, P. V., Dempewolf, J., Talero, Y., Hansen, M. C., Stehman, S. V., Vargas, C., Rojas, E. J., Castillo, D., Mendoza, E., Calderón, A., Giudice, R., Malaga, N., & Zutta, B. R. (2014). National satellite-based humid tropical forest change assessment in Peru in support of REDD+ implementation. Environmental Research Letters, 9(12), 124012. https://doi.org/10.1088/1748-9326/9/12/124012

Potapov, Peter V., Turubanova, S. A., Hansen, M. C., Adusei, B., Broich, M., Altstatt, A., Mane, L., & Justice, C. O. (2012). Quantifying forest cover loss in Democratic Republic of the Congo, 2000-2010, with Landsat ETM+ data. Remote Sensing of Environment, 122, 106-116. https://doi.org/10.1016/j.rse.2011.08.027

Raqeeb, A., Saleem, A., Ansari, L., Nazami, S. M., Muhammad, M. W., Malik, M., Naqash, M., & Khalid, F. (2024). Assessment of land use cover changes, carbon sequestration and carbon stock in dry temperate forests of Chilas watershed, Gilgit-Baltistan. Brazilian Journal of Biology, 84. https://doi.org/10.1590/1519-6984.253821

Ravikumar, A., Sears, R. R., Cronkleton, P., Menton, M., & Pérez-Ojeda del Arco, M. (2017). Is small-scale agriculture really the main driver of deforestation in the Peruvian Amazon? Moving beyond the prevailing narrative. Conservation Letters, 10(2), 170-177. https://doi.org/10.1111/CONL.12264

Recanati, F., Allievi, F., Scaccabarozzi, G., Espinosa, T., Dotelli, G., & Saini, M. (2015). Global Meat Consumption Trends and Local Deforestation in Madre de Dios: Assessing Land Use Changes and other Environmental Impacts. Procedia Engineering, 118, 630-638. https://doi.org/10.1016/J.PROENG.2015.08.496

Rodríguez-Echeverry, J., & Leiton, M. (2021). Pérdida y fragmentación de ecosistemas boscosos nativos y su influencia en la diversidad de hábitats en el hotspot Andes tropicales. Revista Mexicana de Biodiversidad, 92(0), 923449. https://doi.org/10.22201/ib.20078706e.2021.92.3449

Rojas, E., Zutta, B. R., Velazco, Y. K., Montoya-Zumaeta, J. G., & Salvà-Catarineu, M. (2021). Deforestation risk in the Peruvian Amazon basin. Environmental Conservation, 48(4), 310-319. https://doi.org/10.1017/S0376892921000291

Romijn, E., Herold, M., Kooistra, L., Murdiyarso, D., & Verchot, L. (2012). Assessing capacities of non-Annex I countries for national forest monitoring in the context of REDD+. Environmental Science and Policy, 19-20, 33-48. https://doi.org/10.1016/J.ENVSCI.2012.01.005

Roy, D. P., Ju, J., Kline, K., Scaramuzza, P. L., Kovalskyy, V., Hansen, M., Loveland, T. R., Vermote, E., & Zhang, C. (2010). Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sensing of Environment, 114(1), 35-49. https://doi.org/10.1016/J.RSE.2009.08.011

Sugimoto, R., Kato, S., Nakamura, R., Tsutsumi, C., & Yamaguchi, Y. (2022). Deforestation detection using scattering power decomposition and optimal averaging of volume scattering power in tropical rainforest regions. Remote Sensing of Environment, 275. https://doi.org/10.1016/J.RSE.2022.113018

Talukdar, S., Eibek, K. U., Akhter, S., Ziaul, S., Towfiqul Islam, A. R. M., & Mallick, J. (2021). Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecological Indicators, 126, 107612. https://doi.org/10.1016/j.ecolind.2021.107612

Tambosi, L. R., & Metzger, J. P. (2013). A Framework for Setting Local Restoration Priorities Based

on Landscape Context. Brazilian Journal of Nature Conservation Research Letters Natureza & Conservação, 11(2), 152-157. https://doi.org/10.4322/natcon.2013.024

Ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J. F., Monteagudo, A., Vargas, P. N., Montero, J. C., Feldpausch, T. R., Coronado, E. N. H., Killeen, T. J., Mostacedo, B., Vasquez, R., Assis, R. L., … Silman, M. R. (2013). Hyperdominance in the Amazonian tree flora. Science, 342(6156). https://doi.org/10.1126/SCIENCE.1243092/SUPPL_FILE/TERSTEEGE_APPENDIX.XLSX

Tercera Comunicación Nacional del Perú a la Convención Marco de las Naciones Unidas sobre el Cambio Climático | SINIA | Sistema Nacional de Información Ambiental. (s. f.). Recuperado 17 de octubre de 2022, de https://sinia.minam.gob.pe/documentos/tercera-comunicacion-nacional-peru-convencion-marco-las-naciones

Vermote, E. F., El Saleous, N. Z., & Justice, C. O. (2002). Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sensing of Environment, 83(1-2), 97-111. https://doi.org/10.1016/S0034-4257(02)00089-5

Watanabe, M., Koyama, C. N., Hayashi, M., Nagatani, I., & Shimada, M. (2018). Early-stage deforestation detection in the tropics with L-band SAR. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(6), 2127-2133. https://doi.org/10.1109/JSTARS.2018.2810857

Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S. N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., Thenkabail, P. S., Vermote, E. F., Vogelmann, J., Wulder, M. A., & Wynne, R. (2008). Free Access to Landsat Imagery. Science, 320(5879), 1011. https://doi.org/10.1126/SCIENCE.320.5879.1011A

Xu, X., Zhang, X., Riley, W. J., Xue, Y., Nobre, C. A., Lovejoy, T. E., & Jia, G. (2022). Deforestation triggering irreversible transition in Amazon hydrological cycle. Environmental Research Letters, 17(3). https://doi.org/10.1088/1748-9326/AC4C1D

Yanai, A. M., de Alencastro Graça, P. M. L., Ziccardi, L. G., Escada, M. I. S., & Fearnside, P. M. (2022). Brazil’s Amazonian deforestation: the role of landholdings in undesignated public lands. Regional Environmental Change, 22(1). https://doi.org/10.1007/S10113-022-01897-0

Zevallos, J., & Lavado-Casimiro, W. (2022). Climate Change Impact on Peruvian Biomes. Forests, 13(2), 238. https://doi.org/10.3390/f13020238

Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. https://doi.org/10.1016/j.rse.2014.12.014

Zhu, Z., & Woodcock, C. E. (2014). Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sensing of Environment, 152, 217-234. https://doi.org/10.1016/J.RSE.2014.06.012

UNAMAD

Descargas

Publicado

2023-06-20

Cómo citar

Canahuire-Robles, R., Alarcón-Aguire, G., Garate-Quispe, J., Vásquez-Zavaleta, T., Baez-Quispe, S. M., & Herrera-Machaca, M. A. (2023). El Incremento de la Deforestación en Madre de Dios, Durante la Pandemia del COVID-19. Revista Biodiversidad Amazónica, 2(1), 1–12. https://doi.org/10.55873/rba.v2i1.237

Número

Sección

Artículos orginales