Implementation of a pilot bioenergy system for the intelligent management of solid waste and generation of clean energy through the use of chestnut shells in the ASCART processing plant

Authors

  • Gilber Rigoberto Martínez-Maceda Asociación de castañeros de la Reserva Nacional Tambopata y Parque Nacional Bahuaja Sonene ASCART, Madre de Dios – Perú https://orcid.org/0009-0005-9066-8446
  • Jhosseli Milagros García-Asencios Asociación de castañeros de la Reserva Nacional Tambopata y Parque Nacional Bahuaja Sonene ASCART, Madre de Dios – Perú https://orcid.org/0009-0003-1897-0945
  • Rosa América Rosa América Asociación de castañeros de la Reserva Nacional Tambopata y Parque Nacional Bahuaja Sonene ASCART, Madre de Dios – Perú https://orcid.org/0009-0004-1648-2048

DOI:

https://doi.org/10.55873/rba.v2i2.253

Keywords:

Bioenergy, biomass, Bertholletia excelsa, chestnut

Abstract

The objective of this study was to implement a pilot bioenergy system for the intelligent management of solid waste and generation of clean energy through the use of chestnut shells at the ASCART processing plant, Puerto Maldonado, Madre de Dios. Electrical energy was obtained through thermochemical processes that involved pyrolysis and gasification operations of the chestnut shell to obtain producer gases. A simple system was installed on a pilot scale with defined capacities and scientifically proven methodologies. The results of the study show the feasibility and ideal characteristics of experimental biomass for the generation of electrical energy that can gradually replace conventional energy; however, it was found that the currently installed system can only supply 14 % of the demand. energy of the ASCART plant.

References

Ardila, M. A. (2018). Determinación del potencial de gasificación de carbones de la provincia Centro de Boyacá para combustión en horno túnel/Determination of gasification potential of coal from Central Province of Boyacá for combustion in tunnel kiln. Prospectiva, 16(1), 51-59. https://doi.org/10.15665/rp.v16i1.1178

Azcona, S. (2011). Proyecto piloto de generación de energía eléctrica mediante gasificación en comunidades amazónicas aisladas. [Tesis de pregrado, Escuela técnica superior de ingenieros Industriales y de Telecomunicación].

Bonelli, P. (2001). Effect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil Nut shells. Bioresource Technology, 76(1), 15-22. https://doi.org/10.1016/S0960-8524(00)00085-7

Bonelli, P. R., Della, P. A., Cerrella, E. G., & Cukierman, A. L. (1999). Pirólisis de residuos lignocelulosicos: un estudio para su caracterización. Avances en Energías Renovables y Medio Ambiente, 3.

Caputo, A. C., Palumbo, M., Pelagagge, P. M., & Scacchia, F. (2005). Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass and Bioenergy, 28(1), 35-51. https://doi.org/10.1016/j.biombioe.2004.04.009

Corrêa, P. S. P., Zhang, J., Lora, E. E. S., Andrade, R. V., De Mello, L. R., & Ratner, A. (2019). Experimental study on applying biomass-derived syngas in a microturbine. Applied Thermal Engineering, 146, 328-337. https://doi.org/10.1016/j.applthermaleng.2018.09.123

De-Lucas, A., Taranco, C., & Rodríguez-García, E Paniagua, P. (2012). Biomasa, biocombustibles y sostenibilidad. Centro Tecnológico Agrario y Agroalimentario.

Lefebvre, D., Cabanillas, F., Silman, M., & Fernandez, L. E. (2018). Producción y utilización de biocarbón. Cincia.

Pérez, N. P., Machin, E. B., Pedroso, D. T., Roberts, J. J., Antunes, J. S., & Silveira, J. L. (2015). Biomass gasification for combined heat and power generation in the Cuban context: Energetic and economic analysis. Applied Thermal Engineering, 90, 1-12. https://doi.org/10.1016/j.applthermaleng.2015.06.095

Silva, G. V. da, Farias, D. T. de, Coldebella, R., Wacht, W. L., & Pedrazzi, C. (2022). Biomassa de Dendrocalamus giganteus como recurso bioenergético. Ciência Florestal, 32(4), 2244-2262. https://doi.org/10.5902/1980509867680

Sosa, E. (2022). Alternativas bioenergéticas de los residuos sólidos urbanos: panorama en México. Letras Verdes. Revista Latinoamericana de Estudios Socioambientales, 31, 59-76. https://doi.org/10.17141/letrasverdes.31.2022.5086

Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467-481. https://doi.org/10.1016/j.rser.2015.10.122

Yao, S., Lyu, S., An, Y., Lu, J., Gjermansen, C., & Schramm, A. (2019). Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. Journal of Applied Microbiology, 126(2), 359-368. https://doi.org/10.1111/jam.14095

Zapata, X., Rosero, J. J., & Estupiñan, H. A. (2021). Comparison of Treatments by Mercerization and Plasma Glow Discharge on Residues of the Amazon Chestnut Shell (Bertholletia Excelsa). Ingeniería e Investigación, 42(1), e86698. https://doi.org/10.15446/ing.investig.v42n1.86698

Zavaleta, P. (2018). Análisis de impactos productivos y ambientales de la implementación de ventiladores y cambio de combustible en ladrilleras artesanales de Riberalta, Beni. Acta nova, 8(4), 679-699.

UNAMAD

Published

2023-12-20

How to Cite

Martínez-Maceda, G. R. ., García-Asencios, J. M., & Chávez-Concha, R. A. (2023). Implementation of a pilot bioenergy system for the intelligent management of solid waste and generation of clean energy through the use of chestnut shells in the ASCART processing plant. Revista Biodiversidad Amazónica, 2(2), 29–37. https://doi.org/10.55873/rba.v2i2.253

Issue

Section

Original articles