Influence of anthropogenic activities on the water quality of the Chonta micro-watershed in the Tambopata province, Madre de Dios
DOI:
https://doi.org/10.55873/rba.v2i2.254Keywords:
Climate change, Land cover and use, Water conservation, Family gardens, Ecosystem serviceAbstract
The water of the rivers in the Chonta micro-basin is harmed by human activity, mainly agriculture and livestock. The measurements show significant differences in the levels of oxygen, pH, nitrates, phosphates and turbidity between the different sampling points. Spatial analysis with ArcMap and EMVI revealed that 41 % of the microwatershed is covered by forests, highlighting its importance for conservation. However, 9 % of the area has bare soils, indicating soil degradation. The use of grasslands in 50 % ofthe area also contributes to this degradation. Approximately 78 % of the micro-watershed is dedicated to agriculture, which, together with the presence of bare soils and lack of forests, poses challenges for conservation. The occupation of grasslands alsohas negative impacts on water quality, soil and biodiversity. A buffer zone covering 35 % of the total area was identified, crucial for the protection of the surrounding ecosystem. In summary, human activities, such as agriculture and livestock, are affecting water quality in the Chonta micro-basin, posing challenges for the conservation and sustainable management of natural resources.
References
Alarcon-Aguirre, G., Canahuire-Robles, R. R., Guevara, F. M., Rodríguez, L., Gallegos, L. E., & Garate-Quispe, J. (2021). Dynamics of forest loss in the southeast of the Peruvian Amazon: a case study in Madre de Dios. Ecosistemas, 30(2), 1-11. https://doi.org/10.7818/ECOS.2175
Anh, N. T., Can, L. D., Nhan, N. T., Schmalz, B., & Luu, T. Le. (2023). Influences of key factors on river water quality in urban and rural areas: A review. Case Studies in Chemical and Environmental Engineering, 8(May), 100424. https://doi.org/10.1016/j.cscee.2023.100424
Boca, T., & Rodríguez, G. (2012). Métodos estadísticos de la evaluación de la exactitud de productos derivados de sensores remotos Instituto de Clima y Agua, INTA Castelar. Instituto Nacional de Tecnología Agropecuaria.
Borràs, J., Delegido, J., Pezzola, A., Pereira, M., Morassi, G., & Camps-Valls, G. (2017). Clasificación de usos del suelo a partir de imágenes Sentinel-2. Revista de Teledetección, 48, 55. https://doi.org/10.4995/raet.2017.7133
Camara, M., Jamil, N. R., & Abdullah, A. F. Bin. (2019). Impact of land uses on water quality in Malaysia: a review. Ecological Processes, 8(1), 10. https://doi.org/10.1186/s13717-019-0164-x
Dalla, R., & Basso, C. (2023). Agricultura Familíar em Foz do Iguaçu/PR: Desafios e Oportunidades na Produção de Biomassa. [Tesis de pregrado, Universidade Federal da Integração Latino-Americana].
Deche, A., Assen, M., Damene, S., Budds, J., & Kumsa, A. (2023). Dynamics and Drivers of Land Use and Land Cover Change in the Upper Awash Basin, Central Rift Valley of Ethiopia. Environmental management, 72(1), 160-178. https://doi.org/10.1007/s00267-023-01814-z
Ghute, B. B., Shaikh, M. B., & Halder, B. (2023). Impact assessment of natural and anthropogenic activities using remote sensing and GIS techniques in the Upper Purna River basin, Maharashtra, India. Modeling Earth Systems and Environment, 9(2), 1507-1522. https://doi.org/10.1007/S40808-022-01576-3/METRICS
Griscom, B. W., & P. Mark S. Ashton. (2003). Bamboo control of forest succession: Guadua sarcocarpa in Southeastern Peru. Forest Ecology and Management, 175(1-3), 445-454. https://doi.org/10.1016/S0378-1127(02)00214-1
Gupta, H., Kao, S. J., & Dai, M. (2012). The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers. Journal of Hydrology, 464-465, 447-458. https://doi.org/10.1016/J.JHYDROL.2012.07.038
Hamilton, S. K., Kellndorfer, J., Lehner, B., & Tobler, M. (2007). Remote sensing of floodplain geomorphology as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphology, 89(1-2), 23-38. https://doi.org/10.1016/J.GEOMORPH.2006.07.024
Hong, D., Westra, S., & Leonard, M. (2017). A global-scale investigation of trends in annual maximum streamflow. Journal of Hydrology, 552, 28-43. https://doi.org/10.1016/J.JHYDROL.2017.06.015
Hudson, W. D., & Ramon, C. W. (1987). Correct Formulation of the Kappa Coefficient of Agreement. Photogrammetric Engineering & Remote Sensing, 53, 421-422.
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174.
Laura, A., García, M., Carlos, F., & Contreras, A. (2023). Estudio socioantropológico de la agricultura urbana y cultura nutricional desde percepciones socioculturales en Cienfuegos. Revista Conrado, 19(93), 360-373.
Li, C., Zhang, Y., Shen, Y., & Yu, Q. (2020). Decadal water storage decrease driven by vegetation changes in the Yellow River Basin. Science Bulletin, 65(22), 1859-1861. https://doi.org/10.1016/J.SCIB.2020.07.020
Li, Y., Kong, M., Zang, C., & Deng, J. (2023). Spatial and Temporal Evolution and Driving Mechanisms of Water Conservation Amount of Major Ecosystems in Typical Watersheds in Subtropical China. Forests, 14(1), 93. https://doi.org/10.3390/f14010093
Lopes, B. S., Corrêa, K. A. B., Ogasawara, M. E. K., Precinoto, R. S., Cassiano, C. C., Sell, B. M., Melo, R. S., dos Reis Oliveira, P. C., & Ferraz, S. F. de B. (2022). How does land use cover change affect hydrological response in the Atlantic Forest? Implications for ecological restoration. Frontiers in Water, 4, 998349. https://doi.org/10.3389/FRWA.2022.998349/BIBTEX
López, J. L., Salgado, E., Aguirre, J. F., & Méndez, J. A. (2023). Agricultura de temporal y seguridad alimentaria en familias campesinas, un estudio de caso en Puebla-México. Agricultura, Sociedad y Desarrollo, 20(1), 109-124. https://doi.org/10.22231/asyd.v20i1.1531
Mahdian, M., Hosseinzadeh, M., Siadatmousavi, S. M., Chalipa, Z., Delavar, M., Guo, M., Abolfathi, S., & Noori, R. (2023). Modelling impacts of climate change and anthropogenic activities on inflows and sediment loads of wetlands: case study of the Anzali wetland. Scientific Reports, 13(1), 5399. https://doi.org/10.1038/s41598-023-32343-8
Manrique, C., & Delgado, C. (2016). Análisis de situación de salud 2016. Dirección Regional de Salud Madre de Dios: Dirección de Epidemiología.
Niu, C., Chang, J., Wang, Y., Shi, X., Wang, X., Guo, A., Jin, W., & Zhou, S. (2022). A Water Resource Equilibrium Regulation Model Under Water Resource Utilization Conflict: A Case Study in the Yellow River Basin. Water Resources Research, 58(6), e2021WR030779. https://doi.org/10.1029/2021WR030779
Osher, L. J., & Buol, S. W. (1998). Relationship of soil properties to parent material and landscape position in eastern Madre de Dios, Peru. Geoderma, 83(1-2), 143-166. https://doi.org/10.1016/S0016-7061(97)00133-X
Panda, D. K., Kumar, A., & Mohanty, S. (2011). Recent trends in sediment load of the tropical (Peninsular) river basins of India. Global and Planetary Change, 75(3-4), 108-118. https://doi.org/10.1016/J.GLOPLACHA.2010.10.012
Rosello, C., Elsawah, S., Guillaume, J., & Jakeman, A. (2022). A Century of Evolution of Modeling for River Basin Planning to the Next Generation of Models, Methods, and Concepts. En Oxford Research Encyclopedia of Environmental Science. Oxford University Press. https://doi.org/10.1093/acrefore/9780199389414.013.624
Silva, L. S. da, Ferraz, L. L., Sousa, L. F. de, Santos, C. A. S., & Rocha, F. A. (2022). Trend in hydrological series and land use changes in a tropical basin at Northeast Brazil. Revista Brasileira de Ciências Ambientais, 57(1), 137-147. https://doi.org/10.5327/Z2176-94781097
Sousa, L. F., Ferraz, L. L., Santos, C. A. S., Rocha, F. A., & de Jesus, R. M. (2023). Assessment of hydrological trends and changes in hydroclimatic and land use parameters in a river basin in northeast Brazil. Journal of South American Earth Sciences, 128(February), 104464. https://doi.org/10.1016/j.jsames.2023.104464
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L., & Nicholls, R. J. (2009). Sinking deltas due to human activities. Nature Geoscience 2009 2:10, 2(10), 681-686. https://doi.org/10.1038/ngeo629
Talukdar, S., Eibek, K. U., Akhter, S., Ziaul, S., Towfiqul Islam, A. R. M., & Mallick, J. (2021). Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecological Indicators, 126, 107612. https://doi.org/10.1016/j.ecolind.2021.107612
Thieme, M., Lehner, B., Abell, R., Hamilton, S. K., Kellndorfer, J., Powell, G., & Riveros, J. C. (2007). Freshwater conservation planning in data-poor areas: An example from a remote Amazonian basin (Madre de Dios River, Peru and Bolivia). Biological Conservation, 135(4), 484-501. https://doi.org/10.1016/J.BIOCON.2006.10.054
Vercruysse, K., Grabowski, R. C., & Rickson, R. J. (2017). Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth-Science Reviews, 166, 38-52. https://doi.org/10.1016/J.EARSCIREV.2016.12.016
Wang, B., Horna, V., Heckmann, M., Hapsari, K. A., Zimmermann, R., & Behling, H. (2023). Holocene environmental changes inferred from an oxbow lake in a Mauritia palm swamp (aguajal) in the Madre de Dios region, southeastern Peru. Review of Palaeobotany and Palynology, 312, 104863. https://doi.org/10.1016/J.REVPALBO.2023.104863
Zhang, H., Cao, X., Huo, S., Ma, C., Li, W., Liu, Y., Tong, Y., & Wu, F. (2023). Changes in China’s river water quality since 1980: management implications from sustainable development. npj Clean Water, 6(1), 45. https://doi.org/10.1038/s41545-023-00260-y
![UNAMAD](https://revistas.unamad.edu.pe/public/journals/19/submission_254_238_coverImage_en_US.jpg)
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Rembrandt Canahuire-Robles, Shadira Hilares-Vargas, Joel Peña-Valdiglesias
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.