Natural biological control of Pseudosphinx tetrio larvae with Bacillus thuringiensis on Himatanthus sucuuba plants in Satipo

Authors

DOI:

https://doi.org/10.55873/rba.v3i1.272

Keywords:

bacteria, control, larvae, mortality, regrowth

Abstract

The objective of the study was to evaluate the natural biological control of Pseudosphinx tetrio caterpillars under field conditions. The research was conducted between February and March at an altitude of 670 meters above sea level. Larvae were observed in six trees in regrowth with 6 to 10 axes of 2 to 3 m height and leaf abundance; the number of larvae killed by the bacterium was evaluated in situ. The results showed an average of 15.83 + 5.27 last instar larvae per plant; 13.67 + 4.89 dead larvae and 85.9 + 4.67% natural biological control of B. thuringensis on P. tetrio larvae. The biological control of the larva occurs in the last stage, at which time the bacteria takes effect, causing high mortality, where the diseased larva hangs on a leaf of the same plant, then becomes thin, darkened and falls to death

References

Arsov, A., Gerginova, M., Paunova-Krasteva, T., Petrov, K., & Petrova, P. (2023). Multiple

genes in Bacillus thuringiensis strain BTG suggest a broad-spectrum insecticidal activity. International Journal of Molecular Sciences, 24(13), 11137. https://doi.org/10.3390/ijms241311137

Baranek, J., Pluskota, M., Rusin, M. et al. Insecticidal activity of Bacillus thuringiensis strains isolated from tropical greenhouses towards Cydia pomonella and Spodoptera exigua larvae. BioControl 68, 39–48 (2023). https://doi.org/10.1007/s10526-022-10173-3

Belousova, M. E., Malovichko, Y. V., Shikov, A. E., Nizhnikov, A. A., & Antonets, K. S. (2021). Dissecting the environmental consequences of Bacillus thuringiensis application for natural ecosystems. Toxins, 13(5), 355.

https://doi.org/10.3390/toxins13050355

Calero-Armijos, L. L., Herrera-Calderon, O., Arroyo-Acevedo, J. L., Rojas-Armas, J. P., Hañari-Quispe, R. D., & Figueroa-Salvador, L. (2020). Histopathological evaluation of latex of Bellaco-Caspi, Himatanthus sucuuba (Spruce) Woodson on wound healing effect in BALB/C mice. Veterinary World, 13(6), 1045. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396333/

Chandrakasan, G., Ayala, M. T., Trejo, J. F. G., Marcus, G., Maruthupandy, M., Kanisha, C. C., ... & Wadaan, M. A. (2022). Bio controlled efficacy of Bacillus thuringiensis cry protein protection against tomato fruit borer Helicoverpa armigera in a laboratory environment. Physiological and Molecular Plant Pathology, 119, 101827. https://doi.org/10.1016/j.pmpp.2022.101827

Cock, M.J.W. 2008. Pseudosphinx tetrio (L.) (Lepidoptera: Sphingidae) in Trinidad and Tobago. Living World, Journal of The Trinidad and Tobago Field Naturalists’ Club, 2008, 49-52. http://www.livingworld.ttfnc.org/index.php/lwj/article/view/cock2008c/339

Conde Miranda, J. R. (2011). Efecto de entomopatógenos en el control de Erinnyis ello,(Lepidoptera: Sphingidae) en cultivo de yuca (Manihot esculenta C.) en el municippio de Palos Blancos, departamento de La Paz (Doctoral dissertation). http://repositorio.umsa.bo/xmlui/handle/123456789/7234

Domínguez-Arrizabalaga, M., Villanueva, M., Escriche, B., Ancín-Azpilicueta, C., & Caballero, P. (2020). https://doi.org/10.3390/toxins12070430

Duarte Neto, J. M. W., Wanderley, M. C. D. A., da Silva, T. A. F., Marques, D. A. V., da Silva, G. R., Gurgel, J. F., ... & Porto, A. L. F. (2020). Bacillus thuringiensis endotoxin production: a systematic review of the past 10 years. World Journal of Microbiology and Biotechnology, 36, 1-21. https://link.springer.com/article/10.1007/s11274-020-02904-4

Elsharkawy, M. M., Almasoud, M., Alsulaiman, Y. M., Baeshen, R. S., Elshazly, H., Kadi, R. H., ... & Shawer, R. (2022). Efficiency of Bacillus thuringiensis and Bacillus cereus against Rhynchophorus ferrugineus. Insects, 13(10), 905.

https://doi.org/10.3390/insects13100905

Matignon, L., Lo, M. E. M., Vicentini, M., Valencia, D. P., Palmeira-Mello, M. V., Sylvestre, M., ... & Cebrián-Torrejón, G. (2021). Chemoecological Study of Trophic Interaction Between Pseudosphinx Tetrio L. Larvae and Allamanda Cathartica L. https://doi.org/10.21203/rs.3.rs-776886/v1

Minno M. C., Darrow H. N. (1995). Pseudosphinx tetrio (Lepidoptera, Sphingidae) in the Florida Keys. Journal article: News of the Lepidopterists' Society, 1995, No. No. 1, 6 ref. 2

https://www.cabidigitallibrary.org/doi/full/10.5555/19951107083

Nutaratat, P., Werapan, B., Phosrithong, N., Trakulnaleamsai, C., Rungrod, A., Utamatho, M., ... & Prathumpai, W. (2023). Vegetative insecticidal protein (Vip3A) production by Bacillus thuringiensis Bt294 and its efficacy against Lepidopteran pests (Spodoptera exigua). Biotechnology Reports, 40, e00812. https://doi.org/10.1016/j.btre.2023.e00812

Park, M. G., Choi, J. Y., Kim, J. H., Park, D. H., Wang, M., Kim, H. J., ... & Je, Y. H. (2022). Isolation and molecular characterization of Bacillus thuringiensis subsp. kurstaki toxic to lepidopteran pests Spodoptera spp. and Plutella xylostella. Pest management science, 78(7), 2976-2984.

https://doi.org/10.1002/ps.6922

Pinos, D., Andrés-Garrido, A., Ferré, J., & Hernández-Martínez, P. (2021). Response mechanisms of invertebrates to Bacillus thuringiensis and its pesticidal proteins. Microbiology and Molecular Biology Reviews, 85(1), 10-1128. https://doi.org/10.1128/mmbr.00007-20

Santiago-Blay J. A. (1987). Notes on Pseudosphinx tetrio (L.) (Sphingidae) in Puerto Rico. Journal article: Journal of the Lepidopterists' Society, 1985, publ. 1986, Vol. 39, No. 3, 208-214 ref. 14. https://www.cabidigitallibrary.org/doi/full/10.5555/19870542923

Squyres S. (2024). La oruga frangipani tropical, Pseudosphinx tetrio, puede crecer hasta 6 pulgadas de largo. Medicina ambiental y silvestre. 2014;25(1):127-128. doi: www.http//10.1016/j.wem.2013.09.015

Vázquez-Ramírez, M. F., Rangel-Núñez, J. C., Ibarra, J. E., & Del Rincón-Castro, M. C. (2015). Evaluación como agentes de control biológico y caracterización de cepas mexicanas de Bacillus thuringiensis contra el gusano cogollero del maíz Spodoptera frugiperda (Lepidotera: Noctuidae). Interciencia, 40(6), 397-402. https://www.redalyc.org/articulo.oa?id=33938675006

Wei, J. Z., Lum, A., Schepers, E., Liu, L., Weston, R. T., McGinness, B. S., ... & Anderson, M. A. (2023). Novel insecticidal proteins from ferns resemble insecticidal proteins from Bacillus thuringiensis. Proceedings of the National Academy of Sciences, 120(44), e2306177120.

https://doi.org/10.1073/pnas.2306177120

Yamamoto, T. (2022). Engineering of Bacillus thuringiensis insecticidal proteins. Journal of Pesticide Science, 47(2), 47-58. https://www.jstage.jst.go.jp/article/jpestics/47/2/47_D22-016/_article/-char/ja/

UNAMAD

Published

2024-06-30

How to Cite

Alomía-Lucero, J. M., Baltazar-Ruiz , M. A., Cañari-Contreras, M. D., Estrada-Carhuallanqui , H. N., & Castro-Garay, A. (2024). Natural biological control of Pseudosphinx tetrio larvae with Bacillus thuringiensis on Himatanthus sucuuba plants in Satipo. Revista Biodiversidad Amazónica, 3(1), e272. https://doi.org/10.55873/rba.v3i1.272