Efecto de la adición de carbón activado de coco de castaña en las propiedades de un biopolímero para el uso en empaques de alimentos - región Madre de Dios

Autores/as

DOI:

https://doi.org/10.55873/rba.v3i2.355

Palabras clave:

adsorción, almidón, biopolímero, empaques, residuos agroindustriales

Resumen

Este estudio evaluó mezclas biodegradables de carbón activado de coco de castaña (CACC) y almidón de yuca (AY) en proporciones 5/95, 10/90 y 15/85, con el objetivo de desarrollar materiales sostenibles para empaques. Se caracterizaron sus propiedades fisicoquímicas, morfológicas, térmicas y mecánicas. El CACC mostró alta área superficial (400 m²/g) y poros de 3,0 nm, mientras que el AY destacó por su elasticidad y estabilidad térmica (>300 °C). Las mezclas presentaron mejoras hidrofílicas (solubilidad 35,20%, absorción 80,15%, permeabilidad 60,30%) con diferencias significativas (p < 0,05). La elasticidad alcanzó 450 MPa en la proporción 15/85. FTIR reveló interacciones químicas entre los componentes. Estos resultados demuestran la viabilidad de aprovechar residuos agrícolas como el CACC en materiales avanzados, promoviendo una economía circular en regiones como Madre de Dios. La combinación de propiedades térmicas, mecánicas e hidrofílicas posiciona a estas mezclas como alternativas prometedoras para aplicaciones industriales y ambientales.

Citas

Chaichi, M., Hashemi, M., Badii, F., & Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167-175. https://doi.org/10.1016/j.carbpol.2016.09.062

Chen, R., Yin, Y., Yang, C., Li, M., Zheng, Y., Ge, C., Gu, J., Li, H., Duan, M., & Wang, X. (2021). Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: A review. Science of The Total Environment, 798, 149294. https://doi.org/10.1016/j.scitotenv.2021.149294

Chopra, L., Chohan, J. S., Sharma, S., Pelc, M., & Kawala-Sterniuk, A. (2022). Multifunctional Modified Chitosan Biopolymers for Dual Applications in Biomedical and Industrial Field: Synthesis and Evaluation of Thermal, Chemical, Morphological, Structural, In Vitro Drug-Release Rate, Swelling and Metal Uptake Studies. Sensors, 22(9), 3454. https://doi.org/10.3390/s22093454

Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061-1085. https://doi.org/10.1016/j.biortech.2005.05.001

Crini, G. (2021). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30(1), 38-70. https://doi.org/10.1016/j.progpolymsci.2004.11.002

Hamidi, M., Golmakani, M. T., & Mohebbi, M. (2020). Active coatings based on chitosan and polyvinyl alcohol matrix containing activated carbon modified with thymol for food packaging applications. International Journal of Biological Macromolecules, 165, 1566–1575.

Hu, J., Zhang, L., & Liu, W. (2023). Active packaging systems based on biopolymers: A comprehensive review. Food Packaging and Shelf Life, 38, 101040.

Hu, X., Zhou, Y., Li, Z., & Liu, M. (2023). Active biopolymer-based packaging systems: Properties, applications and challenges. Food Packaging and Shelf Life, 35, 101063.

Kaiser, D., Kowalski, N., & Waniek, J. J. (2020). Effects of biofouling on microplastic in the marine environment: A review. Marine Pollution Bulletin, 159, 111057.

Kwaśniewska, D., Szymańska, J., & Majka, T. (2021). Starch and powdered activated carbon-based composite films: Mechanical, morphological, and barrier properties. Materials, 14(15), 4207.

Kwaśniewska, M., Głowacka, A., Węglarz, Z., & Lipińska, E. (2021). Modification of activated carbon and its use in sustainable materials: A review. Materials, 14(5), 1125.

Li, Z., Zhang, L., Peng, Y., & Xia, H. (2020). Surface modification and functionalization of biomass-derived porous carbon materials for environmental applications: A review. Environmental Research, 186, 109478.

Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 115(22), 12251-12285. https://doi.org/10.1021/acs.chemrev.5b00195

Martinez, S., Rivon, C., Troncoso, O. P., & Torres, F. G. (2016). Botanical origin as a determinant for the mechanical properties of starch films with nanoparticle reinforcements. Starch - Stärke, 68(9-10), 935-942. https://doi.org/10.1002/star.201600143

Nooun, K., Laohaprapanon, S., & Yamsaengsung, R. (2022). Natural rubber/starch/activated carbon foam composites for ethylene absorption applications. Polymer Bulletin, 79(5), 2831–2847.

Nooun, S., Jitchum, V., & Sakdaronnarong, C. Thanakkasaranee, S. (2022). Biocomposite foam packaging based on natural rubber, rice starch and activated carbon: Physical and ethylene scavenging properties. Journal of Polymers and the Environment, 30, 1234–1245.

Sadegh-Hassani, F., & Mohammadi Nafchi, A. (2014). Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. International Journal of Biological Macromolecules, 67, 458-462. https://doi.org/10.1016/j.ijbiomac.2014.04.009

Silva dos Santos, M., Dos Santos, E. S., Vieira, A. M., & Oliveira, J. E. (2021). Use of activated carbon and chitosan in coatings to improve barrier and mechanical properties of paper packaging. Journal of Food Engineering, 288, 110118.

Silva dos Santos, M., Souza, D. G., & Souza, R. A. (2021). Sustainable coatings based on chitosan and fatty acids for improving the barrier properties of paperboard packaging. Journal of Food Science and Technology, 58(4), 1537–1545.

Sobhan, A., Rahman, A., & Ahmed, M. (2023). Smart and multifunctional nanocomposite films for food packaging based on activated carbon and nanocellulose: Properties and applications. Journal of Cleaner Production, 388, 136035.

Sobhan, A., Zhao, J., & Yan, W. (2023). Activated carbon/cellulose nanofiber/silver nanoparticle nanocomposite films for antimicrobial food packaging. Food Chemistry, 400, 134049.

Torres, F. G., Arroyo, J., Tineo, C., & Troncoso, O. (2019). Tailoring the Properties of Native Andean Potato Starch Nanoparticles Using Acid and Alkaline Treatments. Starch - Stärke, 71(3-4). https://doi.org/10.1002/star.201800234

Udayakumar, G. P., Muthusamy, S., Selvaganesh, B., Sivarajasekar, N., Rambabu, K., Banat, F., Sivamani, S., Sivakumar, N., Hosseini-Bandegharaei, A., & Show, P. L. (2021). Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. Journal of Environmental Chemical Engineering, 9(4), 105322. https://doi.org/10.1016/j.jece.2021.105322

Zor, C., Alkan, B., Yildiz, M., & Güzel, M. (2021). Hydroxyethyl cellulose/activated carbon composite films for thermal and mechanical enhancement. Polymers, 13(12), 1935.

Zor, E., Acar, C., & Aydemir, D. (2021). Enhancement of mechanical and thermal properties of hydroxyethyl cellulose composites using activated carbon. International Journal of Biological Macromolecules, 193, 2275–2285.

UNAMAD

Descargas

Publicado

2024-07-25

Cómo citar

Fernández-Herrera, Y. F., & Humpire-Castillo, J. E. (2024). Efecto de la adición de carbón activado de coco de castaña en las propiedades de un biopolímero para el uso en empaques de alimentos - región Madre de Dios . Revista Biodiversidad Amazónica, 3(2), e355. https://doi.org/10.55873/rba.v3i2.355

Número

Sección

Artículos orginales