Bioactivación con lacasa para la eliminación de contaminantes farmacéuticos en aguas residuales: nivel de laboratorio, 2025

Autores/as

DOI:

https://doi.org/10.55873/rba.v4i2.390

Palabras clave:

bioactivación, farmacéutica, inmovilización

Resumen

El presente estudio contribuye al Objetivo de Desarrollo Sostenible (ODS) 6: "Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos", al investigar la eficiencia de la lacasa inmovilizada en la eliminación de contaminantes farmacéuticos en aguas residuales, con objetivos de analizar la bioactivación con lacasa, determinar las condiciones óptimas de tratamiento y evaluar la eficiencia de la inmovilización de la lacasa, mediante un estudio básico, cuantitativo y experimental puro, con una población en estudio de 24 litros de agua residual con contaminantes farmacéuticos elaborado a nivel de laboratorio, obteniendo resultados de que la aplicación de lacasa inmovilizada en material de soporte silica obtenido a partir de cascara de pepino (biochar) es una tecnología eficaz para la eliminación de estos contaminantes, alcanzando reducciones de hasta 93,8%, lo que sugiere que la lacasa inmovilizada es una tecnología prometedora para la eliminación de contaminantes farmacéuticos en aguas residuales, contribuyendo a la gestión sostenible del agua.

Citas

Agustin, Melissa B., et al. Laccase as a tool in building advanced lignin‐based materials. ChemSusChem, 2021, vol. 14, no 21, p. 4615-4635. https://doi.org/10.1002/cssc.202101169

Ahmad, Imran, et al. Catalytic insights into laccase for sustainable remediation of multifaceted pharmaceutically active micropollutants from water matrices: A state-of-art review. Journal of Water Process Engineering, 2025, vol. 70, p. 106901. https://doi.org/10.1016/j.jwpe.2024.106901

Al-Sareji, Osamah J., et al. Efficient removal of pharmaceutical contaminants from water and wastewater using immobilized laccase on activated carbon derived from pomegranate peels. Scientific Reports, 2023, vol. 13, no 1, p. 11933. https://doi.org/10.1038/s41598-023-38821-3

Almufarij, Rasmiah S.; Abdulkhair, Babiker Y.; Salih, M. Fast-simplistic fabrication of MoO3@ Al2O3-MgO triple nanocomposites for efficient elimination of pharmaceutical contaminants. Results in Chemistry, 2024, vol. 7, p. 101281. https://doi.org/10.1016/j.rechem.2023.101281

Alokpa, Komla; Vaidyanathan, Vinoth Kumar; Cabana, Hubert. Immobilization of laccase for industrial wastewater treatment: Current challenges and future perspectives. En Laccase and Polyphenol Oxidase. Academic Press, 2025. p. 187-246. https://doi.org/10.1016/B978-0-443-13301-5.00008-1

Alokpa, Komla; Lafortune, François; Cabana, Hubert. Application of laccase and hydrolases for trace organic contaminants removal from contaminated water. Environmental Advances, 2022, vol. 8, p. 100243. https://doi.org/10.1016/j.envadv.2022.100243

Aza, Pablo; Camarero, Susana. Fungal laccases: Fundamentals, engineering and classification update. Biomolecules, 2023, vol. 13, no 12, p. 1716. https://doi.org/10.3390/biom13121716

Bai, Yongsheng, et al. Characterization of plant laccase genes and their functions. Gene, 2023, vol. 852, p. 147060. https://doi.org/10.1016/j.gene.2022.147060

Barber-Zucker, Shiran, et al. Designed high-redox potential laccases exhibit high functional diversity. ACS catalysis, 2022, vol. 12, no 21, p. 13164-13173. https://doi.org/10.1021/acscatal.2c03006

Boni, M. R., et al. A novel treatment for Cd-contaminated solution through adsorption on beech charcoal: The effect of bioactivation. Desalination and water treatment, 2018, vol. 127, p. 104-110. https://doi.org/10.5004/dwt.2018.22664

Chandra, Muni Ramanna Gari Subhosh; MADAKKA, Mekapogu. Comparative biochemistry and kinetics of microbial lignocellulolytic enzymes. En Recent developments in applied microbiology and biochemistry. Academic Press, 2019. p. 147-159. https://doi.org/10.1016/B978-0-12-816328-3.00011-8

Ghose, Anamika, et al. Micropollutants (ciprofloxacin and norfloxacin) remediation from wastewater through laccase derived from spent mushroom waste: Fate, toxicity, and degradation. Journal of Environmental Management, 2024, vol. 366, p. 121857. https://doi.org/10.1016/j.jenvman.2024.121857

Gome, A.; Upadhyay, K. Removal of persistent chemical oxygen demand from pharmaceutical wastewater by ozonation at different pH. International Journal of Environmental Science and Technology, 2023, vol. 20, no 2, p. 2087-2098. https://doi.org/10.1007/s13762-022-03915-4

González Martínez, Constancio. La Investigación básica. La investigación en ciencias fisiológicas: bioquímica, biología molecular y fisiología. Cuestiones previas. Educación médica, 2004, vol. 7, p. 41-50. ISSN 1575-1813

Gu, Haolun, et al. Bioinspired bimetallic metal–organic framework nanozyme with laccase-mimicking activity for detection and removal of phenolic contaminants. Microchemical Journal, 2024, vol. 201, p. 110568. https://doi.org/10.1016/j.microc.2024.110568

Han, Meina, et al. Cytoprotective alginate microcapsule serves as a shield for microalgal encapsulation defensing sulfamethoxazole threats and safeguarding nutrient recovery. Journal of Hazardous Materials, 2024, vol. 465, p. 133454. https://doi.org/10.1016/j.jhazmat.2024.133454

Hassan, Ayat, et al. Bio-activation and mathematical modeling of ZIF-L encapsulated with laccase for enhanced ibuprofen removal from wastewater. Cleaner Engineering and Technology, 2024, p. 100875. https://doi.org/10.1016/j.clet.2024.100875

Hashempour, Yalda, et al. Co-immobilization of laccase and zinc oxide nanoparticles onto bacterial cellulose to achieve synergistic effect of photo and enzymatic catalysis for biodegradation of favipiravir. International Journal of Biological Macromolecules, 2024, p. 139288. https://doi.org/10.1016/j.ijbiomac.2024.139288

Hu, Yingli, et al. Lipase immobilization on macroporous ZIF-8 for enhanced enzymatic biodiesel production. ACS omega, 2021, vol. 6, no 3, p. 2143-2148. https://doi.org/10.1021/acsomega.0c05225

Hu, Xiaolei, et al. MIL-100-Fe self-assembled cellulose nanofibers sponge for Diclofenac cascade encapsulation. Carbohydrate Polymers, 2024, p. 123182. https://doi.org/10.1016/j.carbpol.2024.123182

Iñiguez, Pedro Cadena, et al. Métodos cuantitativos, métodos cualitativos o su combinación en la investigación: un acercamiento en las ciencias sociales. Revista Mexicana de Ciencias Agrícolas, 2017, vol. 8, no 7, p. 1603-1617. ISSN 2007-0934

Janusz, Grzegorz, et al. Laccase properties, physiological functions, and evolution. International journal of molecular sciences, 2020, vol. 21, no 3, p. 966. https://doi.org/10.3390/ijms21030966

Kinga Skalska-Tuomi, et al. Efficient removal of pharmaceuticals from wastewater: Comparative study of three advanced oxidation processes. Volume 375, February 2025, 124276. https://doi.org/10.1016/j.jenvman.2025.124276

Kumar, Ramesh, et al. Advancing pharmaceutical wastewater treatment: A comprehensive review on application of catalytic membrane reactor-based hybrid approaches. Journal of Water Process Engineering, 2024, vol. 58, p. 104838. https://doi.org/10.1016/j.jwpe.2024.104838

Majumder, Abhradeep; GUPTA, Bramha; GUPTA, Ashok Kumar. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. Environmental research, 2019, vol. 176, p. 108542. https://doi.org/10.1016/j.envres.2019.108542

Mehra, Rukmankesh, et al. A structural-chemical explanation of fungal laccase activity. Scientific Reports, 2018, vol. 8, no 1, p. 17285. https://doi.org/10.1038/s41598-018-35633-8

Nguyen, Minh-Ky, et al. Occurrence and fate of pharmaceutical pollutants in wastewater: Insights on ecotoxicity, health risk, and state–of–the-art removal. Chemosphere, 2024, p. 141678. https://doi.org/10.1016/j.chemosphere.2024.141678

Nguyen D. et al. Microplastics and pharmaceuticals from water and wastewater: Occurrence, impacts, and membrane bioreactor-based removal. Separation and Purification Technology. 2025, p. 131489. https://doi.org/10.1016/j.seppur.2025.131489

Peng, Quancai, et al. Pharmaceutically active compounds (PhACs) in surface sediments of the Jiaozhou Bay, north China. Environmental Pollution, 2020, vol. 266, p. 115245. https://doi.org/10.1016/j.envpol.2020.115245

Peña-Guzmán, Carlos, et al. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of environmental management, 2019, vol. 237, p. 408-423. https://doi.org/10.1016/j.jenvman.2019.02.100

Pinheiro, Bruna B., et al. Genipin and glutaraldehyde based laccase two-layers immobilization with improved properties: New biocatalysts with high potential for enzymatic removal of trace organic contaminants. Enzyme and Microbial Technology, 2023, vol. 169, p. 110261. https://doi.org/10.1016/j.enzmictec.2023.110261

Salgado Costa, Carolina, et al. Linking environmental exposure and effects of pharmaceuticals on aquatic biota: state of knowledge in Latin America. 2023. https://doi.org/10.20517/wecn.2023.08

Singh, Anil Kumar, et al. Laccase-based biocatalytic systems application in sustainable degradation of pharmaceutically active contaminants. Journal of Hazardous Materials, 2024, p. 136803. https://doi.org/10.1016/j.jhazmat.2024.136803

Valdez-Carrillo, Melissa, et al. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. Environmental Science and Pollution Research, 2020, vol. 27, p. 44863-44891. https://doi.org/10.1007/s11356-020-10842-9

Vallejo Maite. El diseño de investigación: una breve revisión metodológica. Archivos de cardiología de México, 2002, vol. 72, no 1, p. 8-12. ISSN 1405-9940

Wang, Hao, et al. Laccase immobilization and its degradation of emerging pollutants: A comprehensive review. Journal of Environmental Management, 2024, vol. 359, p. 120984. https://doi.org/10.1016/j.jenvman.2024.120984

Wang, Zhaobo, et al. Study on improving the stability of adsorption-encapsulation immobilized Laccase@ ZIF-67. Biotechnology Reports, 2020, vol. 28, p. e00553. https://doi.org/10.1016/j.btre.2020.e00553

Yang, Xue, et al. Encapsulated laccase in bimetallic Cu/Zn ZIFs as stable and reusable biocatalyst for decolorization of dye wastewater. International Journal of Biological Macromolecules, 2023, vol. 233, p. 123410. https://doi.org/10.1016/j.ijbiomac.2023.123410

Zhu, Mengzhen, et al. The electron shuttle of aloe-emodin promotes the Cu-FeOOH solid solution photocatalytic membrane to activate hydrogen peroxide for the degradation of tannic in traditional Chinese medicine wastewater. Applied Catalysis B: Environment and Energy, 2025, vol. 361, p. 124566. https://doi.org/10.1016/j.apcatb.2024.124566

Descargas

Publicado

2025-07-25

Cómo citar

Chuquival-Fababa, G. del P., & Fasabi-Pisco, L. (2025). Bioactivación con lacasa para la eliminación de contaminantes farmacéuticos en aguas residuales: nivel de laboratorio, 2025. Revista Biodiversidad Amazónica, 4(2), e390. https://doi.org/10.55873/rba.v4i2.390

Número

Sección

Artículos orginales