Salud digital y geolocalización: Evaluación del uso de la IA en el diagnóstico médico preliminar y la recomendación de centros de salud cercanos en aplicaciones móviles
DOI:
https://doi.org/10.55873/rad.v4i2.416Palabras clave:
accesibilidad, diagnóstico preliminar, equidad, mHealth, usabilidadResumen
El acceso oportuno a servicios de salud sigue siendo un reto en contextos rurales y periurbanos, donde la falta de diagnóstico preliminar inmediato y de orientación hacia centros cercanos limita la atención adecuada. Esta revisión sistemática, realizada bajo el protocolo PRISMA, analizó 28 estudios publicados entre 2021 y 2025 sobre el uso de inteligencia artificial (IA) en aplicaciones móviles para diagnóstico inicial y su integración con sistemas de geolocalización. Los resultados mostraron que la IA alcanza precisiones de hasta 95% en patologías específicas, aunque en chequeadores de síntomas su desempeño fue inferior al 65%. Los modelos de geolocalización mejoraron el acceso a servicios en áreas urbanas, pero enfrentaron limitaciones en zonas rurales por baja conectividad y mapas incompletos. Se concluye que la integración IA geolocalización ofrece un potencial significativo para fortalecer la salud digital, aunque requiere superar desafíos éticos, regulatorios y de equidad en el acceso.
Descargas
Citas
Abdulazeem, H. M., Meckawy, R., Schwarz, S., Novillo-Ortiz, D., & Klug, S. J. (2025). Knowledge, attitude, and practice of primary care physicians toward clinical AI-assisted digital health technologies: Systematic review and meta-analysis. International Journal of Medical Informatics, 201. https://doi.org/10.1016/j.ijmedinf.2025.105945
Arellano Carmona, K., Chittamuru, D., Kravitz, R. L., Ramondt, S., & Ramírez, A. S. (2022). Health Information Seeking From an Intelligent Web-Based Symptom Checker: Cross-sectional Questionnaire Study. Journal of Medical Internet Research, 24(8). https://doi.org/10.2196/36322
Ben-Shabat, N., Sharvit, G., Meimis, B., Ben Joya, D., Sloma, A., Kiderman, D., Shabat, A., Tsur, A. M., Watad, A., & Amital, H. (2022). Assessing data gathering of chatbot based symptom checkers - a clinical vignettes study. International Journal of Medical Informatics, 168. https://doi.org/10.1016/j.ijmedinf.2022.104897
Benoit, J. R. A., Hartling, L., & Scott, S. D. (2023). Bridging evidence-to-care gaps with mHealth: Designing a symptom checker for parents accessing knowledge translation resources on acute children’s illnesses in a smartphone application. PEC Innovation, 2. https://doi.org/10.1016/j.pecinn.2023.100152
Bhat, M., Rabindranath, M., Chara, B. S., & Simonetto, D. A. (2023). Artificial intelligence, machine learning, and deep learning in liver transplantation. Journal of Hepatology, 78(6), 1216–1233. https://doi.org/10.1016/j.jhep.2023.01.006
Birati, Y., Kolpina, L., & Zisberg, A. (2025). Adapting and psychometrically testing the mobile health app usability questionnaire for older adults in primary care. Geriatric Nursing, 65. https://doi.org/10.1016/j.gerinurse.2025.103536
Bucci, S., Zhang, X., Di Basilio, D., Richardson, C., Berry, N., Berry, K., Edge, D., & Haddock, G. (2025). “It’s like having a friend in your pocket.” the service user experience of the Actissist digital health intervention for early psychosis: a qualitative study. BMC Psychiatry, 25(1). https://doi.org/10.1186/s12888-025-07071-0
Duplaga, M., & Turosz, N. (2022). User satisfaction and the readiness-to-use e-health applications in the future in Polish society in the early phase of the COVID-19 pandemic: A cross-sectional study. International Journal of Medical Informatics, 168. https://doi.org/10.1016/j.ijmedinf.2022.104904
Fuster-Casanovas, A., Melero, S. M., Cabutto, D., Carrion, C., Vidal-Alaball, J., Herrera-Ramos, E., Barcons, C., & Duarte-Díaz, A. (2025). Exploring digital health tools for depression management in primary health care: Systematic review and meta-analysis. Journal of Affective Disorders, 381, 494–506. https://doi.org/10.1016/j.jad.2025.03.187
Hahnenkamp, K., Flessa, S., Laslo, T., & Hasebrook, J. P. (2025). Integrating Telemedical Supervision, Responder Apps, and Data-Driven Triage: The RuralRescue Model of Personalized Emergency Care. Journal of Personalized Medicine, 15(7). https://doi.org/10.3390/jpm15070314
Ignatowicz, A. A., Marciniak, T., & Marciniak, E. (2025). AI-Powered Mobile App for Nuclear Cataract Detection. Sensors, 25(13). https://doi.org/10.3390/s25133954
Jürgens, K., Raddatz, A., Tausendfreund, F., & Clemens, T. (2024). Market access regulations for mHealth applications in Germany, Austria and Switzerland: A Review. Health Policy and Technology, 13(5). https://doi.org/10.1016/j.hlpt.2024.100934
Kelley, M. M., Powell, T., Camara, D., Shah, N., Norton, J. M., Deitelzweig, C., Vaidy, N., Hsiao, C.-J., Wang, J., & Bierman, A. S. (2024). Mobile Health Apps, Family Caregivers, and Care Planning: Scoping Review. Journal of Medical Internet Research, 26. https://doi.org/10.2196/46108
Kleine, A.-K., Kokje, E., Hummelsberger, P., Lermer, E., Schaffernak, I., & Gaube, S. (2025). AI-enabled clinical decision support tools for mental healthcare: A product review. Artificial Intelligence in Medicine, 160. https://doi.org/10.1016/j.artmed.2024.103052
Knitza, J., Tascilar, K., Fuchs, F., Mohn, J., Kuhn, S., Bohr, D., Muehlensiepen, F., Bergmann, C., Labinsky, H., Morf, H., Araujo, E., Englbrecht, M., Vorbrüggen, W., von der Decken, C.-B., Kleinert, S., Ramming, A., Distler, J. H. W., Bartz-Bazzanella, P., Vuillerme, N., … Hueber, A. (2024). Diagnostic Accuracy of a Mobile AI-Based Symptom Checker and a Web-Based Self-Referral Tool in Rheumatology: Multicenter Randomized Controlled Trial. Journal of Medical Internet Research, 26. https://doi.org/10.2196/55542
Lee, T.-Y., Chen, C.-H., Liu, C.-M., Chen, I.-M., Chen, H.-C., Wu, S.-I., Hsiao, C. K., & Kuo, P.-H. (2025). Fourier Transform Analysis of GPS-Derived Mobility Patterns for Diagnosis and Mood Monitoring of Bipolar and Major Depressive Disorders: Prospective Study. Journal of Medical Internet Research, 27. https://doi.org/10.2196/71658
Li, Y., Tao, W., Li, Z., Sun, Z., Li, F., Fenton, S., Xu, H., & Tao, C. (2024). Artificial intelligence-powered pharmacovigilance: A review of machine and deep learning in clinical text-based adverse drug event detection for benchmark datasets. Journal of Biomedical Informatics, 152. https://doi.org/10.1016/j.jbi.2024.104621
Lin, J., Bates, S. M., Allen, L. N., Wright, M., Mao, L., & Kidd, M. (2025). Integrating Mobile Health App Data Into Electronic Medical or Health Record Systems and Its Impact on Health Care Delivery and Patient Health Outcomes: Scoping Review. JMIR MHealth and UHealth, 13. https://doi.org/10.2196/66650
Mentzou, A., Rogers, A., Carvalho, E., Daly, A., Malone, M., & Kerasidou, X. (2025). Artificial Intelligence in Digital Self-Diagnosis Tools: A Narrative Overview of Reviews. Mayo Clinic Proceedings: Digital Health, 3(3). https://doi.org/10.1016/j.mcpdig.2025.100242
Odom, J. N., Lee, K., Harrell, E. R., Watts, K. A., Bechthold, A. C., Engler, S., Puga, F., Bibriescas, N., Kamal, A. H., Ritchie, C. S., Demiris, G., Wright, A. A., Bakitas, M. A., & Azuero, A. (2025). Associations between smartphone GPS data and changes in psychological health and burden outcomes among family caregivers and patients with advanced cancer: an exploratory longitudinal cohort study. BMC Cancer, 25(614). https://doi.org/10.1186/s12885-025-14009-y
Park, H. S., Jeong, S., Chung, H., Soh, J. Y., Hyun, Y. H., Bang, S. H., & Kim, H. S. (2022). Use of video-based telehealth services using a mobile app for workers in underserved areas during the COVID-19 pandemic: A prospective observational study. International Journal of Medical Informatics, 166. https://doi.org/10.1016/j.ijmedinf.2022.104844
Phan, D. T., Nguyen, C. H., Nguyen, T. D. P., Tran, L. H., Park, S., Choi, J., Lee, B., & Oh, J. (2022). A Flexible, Wearable, and Wireless Biosensor Patch with Internet of Medical Things Applications. Biosensors, 12(3). https://doi.org/10.3390/bios12030139
Qi, W., Zhu, X., Wang, B., Shi, Y., Dong, C., Shen, S., Li, J., Zhang, K., He, Y., Zhao, M., Yao, S., Dong, Y., Shen, H., Kang, J., Lu, X., Jiang, G., Boots, L. M. M., Fu, H., Pan, L., … Cao, S. (2025). Alzheimer’s disease digital biomarkers multidimensional landscape and AI model scoping review. Npj Digital Medicine, 8(1). https://doi.org/10.1038/s41746-025-01640-z
Saif‐Ur‐Rahman, K., Islam, M. S., Alaboson, J., Ola, O., Hasan, I., Islam, N., Mainali, S., Martina, T., Silenga, E., Muyangana, M., & Joarder, T. (2023). Artificial intelligence and digital health in improving primary health care service delivery in LMICs: A systematic review. Journal of Evidence-Based Medicine, 16(3), 303–320. https://doi.org/10.1111/jebm.12547
Sangers, T. E., Wakkee, M., Moolenburgh, F., Nijsten, T., & Lugtenberg, M. (2025). Mobile health apps for skin cancer triage in the general population: a qualitative study on healthcare providers’ perspectives. BMC Cancer, 25(1). https://doi.org/10.1186/s12885-025-14244-3
Theodosiou, A. A., & Read, R. C. (2023). Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician. Journal of Infection, 87(4), 287–294. https://doi.org/10.1016/j.jinf.2023.07.006
Veluvali, A., Dehghani Zahedani, A., Hosseinian, A., Aghaeepour, N., McLaughlin, T., Woodward, M., DiTullio, A., Hashemi, N., & Snyder, M. P. (2025). Impact of digital health interventions on glycemic control and weight management. Npj Digital Medicine, 8(1). https://doi.org/10.1038/s41746-025-01430-7

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Cesia Keren Pintado-Córdova, Liz Nery Cieza-Cruz, Juan Jose Torres-Solano

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.