Digital health and geolocation: Evaluating the use of AI in preliminary medical diagnosis and recommendation of nearby health centers in mobile applications
DOI:
https://doi.org/10.55873/rad.v4i2.416Keywords:
accessibility, equity, mHealth, preliminary diagnosis, usabilityAbstract
Timely access to health services continues to be a challenge in rural and peri-urban contexts, where the lack of immediate preliminary diagnosis and guidance to nearby centers limits adequate care. This systematic review, carried out under the PRISMA protocol, analyzed 28 studies published between 2021 and 2025 on the use of artificial intelligence (AI) in mobile applications for initial diagnosis and its integration with geolocation systems. The results showed that AI reaches accuracies of up to 95% in specific pathologies, although in symptom checkers its performance was below 65%. Geolocation models improved access to services in urban areas but faced limitations in rural zones due to low connectivity and incomplete maps. It is concluded that the integration of AI and geolocation offers significant potential to strengthen digital health, although it requires overcoming ethical, regulatory, and equity challenges in access.
Downloads
References
Abdulazeem, H. M., Meckawy, R., Schwarz, S., Novillo-Ortiz, D., & Klug, S. J. (2025). Knowledge, attitude, and practice of primary care physicians toward clinical AI-assisted digital health technologies: Systematic review and meta-analysis. International Journal of Medical Informatics, 201. https://doi.org/10.1016/j.ijmedinf.2025.105945
Arellano Carmona, K., Chittamuru, D., Kravitz, R. L., Ramondt, S., & Ramírez, A. S. (2022). Health Information Seeking From an Intelligent Web-Based Symptom Checker: Cross-sectional Questionnaire Study. Journal of Medical Internet Research, 24(8). https://doi.org/10.2196/36322
Ben-Shabat, N., Sharvit, G., Meimis, B., Ben Joya, D., Sloma, A., Kiderman, D., Shabat, A., Tsur, A. M., Watad, A., & Amital, H. (2022). Assessing data gathering of chatbot based symptom checkers - a clinical vignettes study. International Journal of Medical Informatics, 168. https://doi.org/10.1016/j.ijmedinf.2022.104897
Benoit, J. R. A., Hartling, L., & Scott, S. D. (2023). Bridging evidence-to-care gaps with mHealth: Designing a symptom checker for parents accessing knowledge translation resources on acute children’s illnesses in a smartphone application. PEC Innovation, 2. https://doi.org/10.1016/j.pecinn.2023.100152
Bhat, M., Rabindranath, M., Chara, B. S., & Simonetto, D. A. (2023). Artificial intelligence, machine learning, and deep learning in liver transplantation. Journal of Hepatology, 78(6), 1216–1233. https://doi.org/10.1016/j.jhep.2023.01.006
Birati, Y., Kolpina, L., & Zisberg, A. (2025). Adapting and psychometrically testing the mobile health app usability questionnaire for older adults in primary care. Geriatric Nursing, 65. https://doi.org/10.1016/j.gerinurse.2025.103536
Bucci, S., Zhang, X., Di Basilio, D., Richardson, C., Berry, N., Berry, K., Edge, D., & Haddock, G. (2025). “It’s like having a friend in your pocket.” the service user experience of the Actissist digital health intervention for early psychosis: a qualitative study. BMC Psychiatry, 25(1). https://doi.org/10.1186/s12888-025-07071-0
Duplaga, M., & Turosz, N. (2022). User satisfaction and the readiness-to-use e-health applications in the future in Polish society in the early phase of the COVID-19 pandemic: A cross-sectional study. International Journal of Medical Informatics, 168. https://doi.org/10.1016/j.ijmedinf.2022.104904
Fuster-Casanovas, A., Melero, S. M., Cabutto, D., Carrion, C., Vidal-Alaball, J., Herrera-Ramos, E., Barcons, C., & Duarte-Díaz, A. (2025). Exploring digital health tools for depression management in primary health care: Systematic review and meta-analysis. Journal of Affective Disorders, 381, 494–506. https://doi.org/10.1016/j.jad.2025.03.187
Hahnenkamp, K., Flessa, S., Laslo, T., & Hasebrook, J. P. (2025). Integrating Telemedical Supervision, Responder Apps, and Data-Driven Triage: The RuralRescue Model of Personalized Emergency Care. Journal of Personalized Medicine, 15(7). https://doi.org/10.3390/jpm15070314
Ignatowicz, A. A., Marciniak, T., & Marciniak, E. (2025). AI-Powered Mobile App for Nuclear Cataract Detection. Sensors, 25(13). https://doi.org/10.3390/s25133954
Jürgens, K., Raddatz, A., Tausendfreund, F., & Clemens, T. (2024). Market access regulations for mHealth applications in Germany, Austria and Switzerland: A Review. Health Policy and Technology, 13(5). https://doi.org/10.1016/j.hlpt.2024.100934
Kelley, M. M., Powell, T., Camara, D., Shah, N., Norton, J. M., Deitelzweig, C., Vaidy, N., Hsiao, C.-J., Wang, J., & Bierman, A. S. (2024). Mobile Health Apps, Family Caregivers, and Care Planning: Scoping Review. Journal of Medical Internet Research, 26. https://doi.org/10.2196/46108
Kleine, A.-K., Kokje, E., Hummelsberger, P., Lermer, E., Schaffernak, I., & Gaube, S. (2025). AI-enabled clinical decision support tools for mental healthcare: A product review. Artificial Intelligence in Medicine, 160. https://doi.org/10.1016/j.artmed.2024.103052
Knitza, J., Tascilar, K., Fuchs, F., Mohn, J., Kuhn, S., Bohr, D., Muehlensiepen, F., Bergmann, C., Labinsky, H., Morf, H., Araujo, E., Englbrecht, M., Vorbrüggen, W., von der Decken, C.-B., Kleinert, S., Ramming, A., Distler, J. H. W., Bartz-Bazzanella, P., Vuillerme, N., … Hueber, A. (2024). Diagnostic Accuracy of a Mobile AI-Based Symptom Checker and a Web-Based Self-Referral Tool in Rheumatology: Multicenter Randomized Controlled Trial. Journal of Medical Internet Research, 26. https://doi.org/10.2196/55542
Lee, T.-Y., Chen, C.-H., Liu, C.-M., Chen, I.-M., Chen, H.-C., Wu, S.-I., Hsiao, C. K., & Kuo, P.-H. (2025). Fourier Transform Analysis of GPS-Derived Mobility Patterns for Diagnosis and Mood Monitoring of Bipolar and Major Depressive Disorders: Prospective Study. Journal of Medical Internet Research, 27. https://doi.org/10.2196/71658
Li, Y., Tao, W., Li, Z., Sun, Z., Li, F., Fenton, S., Xu, H., & Tao, C. (2024). Artificial intelligence-powered pharmacovigilance: A review of machine and deep learning in clinical text-based adverse drug event detection for benchmark datasets. Journal of Biomedical Informatics, 152. https://doi.org/10.1016/j.jbi.2024.104621
Lin, J., Bates, S. M., Allen, L. N., Wright, M., Mao, L., & Kidd, M. (2025). Integrating Mobile Health App Data Into Electronic Medical or Health Record Systems and Its Impact on Health Care Delivery and Patient Health Outcomes: Scoping Review. JMIR MHealth and UHealth, 13. https://doi.org/10.2196/66650
Mentzou, A., Rogers, A., Carvalho, E., Daly, A., Malone, M., & Kerasidou, X. (2025). Artificial Intelligence in Digital Self-Diagnosis Tools: A Narrative Overview of Reviews. Mayo Clinic Proceedings: Digital Health, 3(3). https://doi.org/10.1016/j.mcpdig.2025.100242
Odom, J. N., Lee, K., Harrell, E. R., Watts, K. A., Bechthold, A. C., Engler, S., Puga, F., Bibriescas, N., Kamal, A. H., Ritchie, C. S., Demiris, G., Wright, A. A., Bakitas, M. A., & Azuero, A. (2025). Associations between smartphone GPS data and changes in psychological health and burden outcomes among family caregivers and patients with advanced cancer: an exploratory longitudinal cohort study. BMC Cancer, 25(614). https://doi.org/10.1186/s12885-025-14009-y
Park, H. S., Jeong, S., Chung, H., Soh, J. Y., Hyun, Y. H., Bang, S. H., & Kim, H. S. (2022). Use of video-based telehealth services using a mobile app for workers in underserved areas during the COVID-19 pandemic: A prospective observational study. International Journal of Medical Informatics, 166. https://doi.org/10.1016/j.ijmedinf.2022.104844
Phan, D. T., Nguyen, C. H., Nguyen, T. D. P., Tran, L. H., Park, S., Choi, J., Lee, B., & Oh, J. (2022). A Flexible, Wearable, and Wireless Biosensor Patch with Internet of Medical Things Applications. Biosensors, 12(3). https://doi.org/10.3390/bios12030139
Qi, W., Zhu, X., Wang, B., Shi, Y., Dong, C., Shen, S., Li, J., Zhang, K., He, Y., Zhao, M., Yao, S., Dong, Y., Shen, H., Kang, J., Lu, X., Jiang, G., Boots, L. M. M., Fu, H., Pan, L., … Cao, S. (2025). Alzheimer’s disease digital biomarkers multidimensional landscape and AI model scoping review. Npj Digital Medicine, 8(1). https://doi.org/10.1038/s41746-025-01640-z
Saif‐Ur‐Rahman, K., Islam, M. S., Alaboson, J., Ola, O., Hasan, I., Islam, N., Mainali, S., Martina, T., Silenga, E., Muyangana, M., & Joarder, T. (2023). Artificial intelligence and digital health in improving primary health care service delivery in LMICs: A systematic review. Journal of Evidence-Based Medicine, 16(3), 303–320. https://doi.org/10.1111/jebm.12547
Sangers, T. E., Wakkee, M., Moolenburgh, F., Nijsten, T., & Lugtenberg, M. (2025). Mobile health apps for skin cancer triage in the general population: a qualitative study on healthcare providers’ perspectives. BMC Cancer, 25(1). https://doi.org/10.1186/s12885-025-14244-3
Theodosiou, A. A., & Read, R. C. (2023). Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician. Journal of Infection, 87(4), 287–294. https://doi.org/10.1016/j.jinf.2023.07.006
Veluvali, A., Dehghani Zahedani, A., Hosseinian, A., Aghaeepour, N., McLaughlin, T., Woodward, M., DiTullio, A., Hashemi, N., & Snyder, M. P. (2025). Impact of digital health interventions on glycemic control and weight management. Npj Digital Medicine, 8(1). https://doi.org/10.1038/s41746-025-01430-7

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Cesia Keren Pintado-Córdova, Liz Nery Cieza-Cruz, Juan Jose Torres-Solano

This work is licensed under a Creative Commons Attribution 4.0 International License.