Impact of a data warehouse on the satisfaction of delinquency management
DOI:
https://doi.org/10.55873/rad.v2i2.325Keywords:
institutional management, Kimball methodology, decision making, data transformationAbstract
In recent years, information-based decision making has been crucial for organizational growth. However, the inadequate use of data generates deficiencies that affect institutional management. The objective of this research was to evaluate the impact of the implementation of a Data Warehouse in the delinquency management of the Colegio de Ingenieros del Perú - Consejo Departamental San Martín (CIP-CDSMT). An experimental study was conducted with the board of directors as a sample. A questionnaire was applied to measure the impact and the Kimball methodology was used as a guide to design the DwH, structuring the necessary information. The results showed that 92% of the respondents perceived significant improvements in decision making, evidencing a positive change between the pre- and post-test. In conclusion, the implementation of the Data Warehouse made it possible to organize and transform data, facilitating analysis through filters that supported strategic decisions. This was reflected in a higher level of management satisfaction and tangible benefits for the institution.
Downloads
References
Atay, C. E., & Garani, G. (2020). Building a lung and ovarian cancer data warehouse. Healthcare Informatics Research, 26(4), 303–310. https://doi.org/10.4258/hir.2020.26.4.303
Enríquez Herrera, J. V., López Goyez, J. P., & Zabala Villarreal, W. A. (2022). Business intelligence & data analytics aplicado al proceso de seguimiento curricular en la universidad UPEC. Minerva Journal, 3(1), 9–20. https://doi.org/10.47460/minerva.v1iSpecial.75
Forero Castañeda, D. A., & Sánchez García, J. A. (2021). Introducción a la inteligencia de negocios basada en la metodología Kimball. Tecnología Investigación y Academia, 9(1), 5–17. https://revistas.udistrital.edu.co/index.php/tia/article/view/18082
García Delgado, R. B. (2022). Procesos de cobranza y morosidad en una empresa de servicios de marketing. Marketing Science Review, 3, 462–477. https://doi.org/10.51798/sijis.v3i1.237
Ghosh, P., Sadhu, D., & Sen, S. (2021). A real-time business analysis framework using virtual data warehouse. International Arab Journal of Information Technology, 18(4), 585–595. https://doi.org/10.34028/18/4/11
Medina, Q. F., Fariña, M. F., & Castillo-Rojas, W. (2018). Data mart para obtención de indicadores de productividad académica en una universidad. Ingeniare, 26(Suppl 1), 88–101. https://www.scielo.cl/pdf/ingeniare/v26s1/0718-3305-ingeniare-26-00088.pdf
Mosso-Martínez, M. M. (2020). Causas económicas de morosidad en la cartera hipotecaria titulizada en México. Análisis Económico, 35(89), 215–238. https://doi.org/10.24275/uam/azc/dcsh/ae/2020v35n89/mosso
Nambiar, A., & Mundra, D. (2022). An overview of data warehouse and data lake in modern enterprise data management. Big Data and Cognitive Computing, 6(4), 132. https://doi.org/10.3390/bdcc6040132
Paredes, A., & Ramos, N. (2021). Políticas y procedimientos de cobranza y su impacto en el índice de morosidad en colegios privados a nivel básico del distrito de Independencia, Lima: Caso Institución Educativa Privada José María Arguedas, año 201. ORCID. https://orcid.org/0000-0002-3738-519X
Silva Peñafiel, G. E., Zapata Yánez, V. M., Morales Guamán, K. P., & Toaquiza Padilla, L. M. (2019). Análisis de metodologías para desarrollar data warehouse aplicado a la toma de decisiones. Ciencia Digital, 3(3.4), 397–418. https://doi.org/10.33262/cienciadigital.v3i3.4.922
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Alexander Romero-Chuquital, John Jeanfranco Melendres-Velasco
This work is licensed under a Creative Commons Attribution 4.0 International License.