Biomasa del bosque natural del Centro de biodiversidad de la Universidad nacional de San Martín

Autores/as

DOI:

https://doi.org/10.55873/gentryana.v3i1.345

Palabras clave:

almacenamiento de carbono, bosque natural, microorganismos descomponedores, suelo del bosque

Resumen

Conocer la biomasa del bosque natural permite dimensionar su valor ecológico y económico; además, enfoca prospección clara de adecuada convivencia. El objetivo del presente estudio fue calcular el almacenamiento de carbono de la biomasa, la situación del suelo y tipos de microorganismos descomponedores orgánicos del bosque natural en el Cerro Escalera. Se seccionaron tres lotes, al azar, en el interior del bosque de 136 hectáreas, del Centro de Biodiversidad, administrado por la Universidad nacional de San Martín, con latitud Sur -6.4607; longitud Oeste -76.2896; altitud 963 msnm. Muestra de mantillo se analizó en el laboratorio de microbiología de suelos de la Universidad Nacional de San Martín, para determinar la existencia y conteo de bacterias y hongos. La metodología fue con diluciones y siembra, en placas Petri, conteniendo medio de cultivo TSA (triptona soya agar) para bacterias; y, medio PDA (papa dextrosa agar) para hongos. Resultados, la biomasa seca del bosque natural, pesa 127849 kg ha-1 y almacena 58 t ha-1 de carbono orgánico. El suelo muestra bajo contenido nutricional de nitrógeno (0,03 %), fósforo (2,95 ppm) y potasio (53,9 ppm). El mantillo ostenta 13 833 333 unidades formadoras de colonias (ufc) de bacterias por gramo de mantillo y 120 000 unidades formadoras de colonias (ufc) de hongos por gramo de mantillo. Conclusión, la biomasa del bosque almacena 58 t ha-1 de carbono orgánico, proveniente de 128 t ha-1 de biomasa.

Citas

Azhar, B., van der Meer, P., Sterenborg, R. F., Yahya, M. S., Razi, N., Burhanuddin, M., Rookmaker, J., Sahimi, N. S., van der Pal, W., Nobilly, F., Azam, S. A. M., Ubachs, M., Syakir, M. I., Zaki, W. M. W., Zulkipli, N. A., & Oon, A. (2024). Resilience underground: Understanding earthworm biomass responses to land use changes in the tropics. Biological Conservation, 299, 110800. https://doi.org/10.1016/j.biocon.2024.110800

Bogunović, I., & Filipović, V. (2023). Mulch as a nature-based solution to halt and reverse land degradation in agricultural areas. Current Opinion in Environmental Science & Health, 34, 100488. https://doi.org/10.1016/j.coesh.2023.100488

Carter, T. A., & Buma, B. (2024). The distribution of tree biomass carbon within the Pacific Coastal Temperate Rainforest, a disproportionally carbon dense forest. Canadian Journal of Forest Research, 54(9), 956-977. https://doi.org/10.1139/cjfr-2024-0015

Cheng, Z., Aakala, T., & Larjavaara, M. (2023). Elevation, aspect, and slope influence woody vegetation structure and composition but not species richness in a human-influenced landscape in northwestern Yunnan, China. Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1187724

Corral-Lugo, A., Morales-García, Y. E., Pazos-Rojas, L. A., Ramírez-Valverde, A., Martínez-Contreras, R. D., & Muñoz-Rojas, J. (2012). Cuantificación de bacterias cultivables mediante el método de “Goteo en Placa por Sellado (o estampado) Masivo”. Revista Colombiana de Biotecnología, 14(2), 147-156. http://www.revistas.unal.edu.co/index.php/biotecnologia/article/view/37416/40417

Egeta, D. (2024). The contribution of tropical forests to climate change mitigation. Biomass estimation techniques a necessary tool in their assessment. Journal of the Selva Andina Biosphere, 12(2), 81-89. https://doi.org/10.36610/j.jsab.2024.120200081

Fragoso-Medina, M. del C., Navarrete-Segueda, A., Ceccon, E., & Martínez-Ramos, M. (2024). Effects of the forests-agriculture conversion on the availability and diversity of forest products in a neotropical rainforest region. Trees, Forests and People, 15, 100481. https://doi.org/10.1016/j.tfp.2023.100481

Hernando, A., Puerto, L., Mola-Yudego, B., Manzanera, J., García-Abril, A., Maltamo, M., & Valbuena, R. (2019). Estimation of forest biomass components using airborne LiDAR and multispectral sensors. iForest - Biogeosciences and Forestry, 12(2), 207-213. https://doi.org/10.3832/ifor2735-012

Ispikoudis, S., Zianis, D., Tziolas, E., Damianidis, C., Rapti, D., Tsiros, E., Michalakis, D., & Karteris, A. (2024). Assessment of Forest Biomass and Carbon Storage in Habitat 9340 Quercus ilex L. to Support Management Decisions for Climate Change Mitigation. Sustainability, 16(4), 1403. https://doi.org/10.3390/su16041403

Kale, R. D., & Karmegam, N. (2010). The Role of Earthworms in Tropics with Emphasis on Indian Ecosystems. Applied and Environmental Soil Science, 2010, 1-16. https://doi.org/10.1155/2010/414356

Kassaye, M., Derebe, Y., Kibrie, W., Debebe, F., Emiru, E., Gedamu, B., & Tamir, M. (2024). The effects of environmental variability and forest management on natural forest carbon stock in northwestern Ethiopia. Ecology and Evolution, 14(6). https://doi.org/10.1002/ece3.11476

Kumar, P., Kumar, A., Patil, M., Hussain, S., & Singh, A. N. (2024). Factors influencing tree biomass and carbon stock in the Western Himalayas, India. Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1328694

Lapeyre, T., Alegre, J., & Arévalo, L. (2004). Determinación de las Reservas de Carbono de la Biomasa Aérea, en diferentes Sistemas de Uso de la Tierra en San Martín, Perú. Ecología Aplicada, 3(1,2), 36-44. http://www.scielo.org.pe/scielo.php?pid=S1726-22162004000100006&script=sci_abstract

Liu, H., Dong, X., Zhang, Y., Qu, H., Ren, Y., Zhang, B., & Gao, T. (2024). Estimation of biomass in various components of Pinus koraiensis based on Bayesian methods. Frontiers in Forests and Global Change, 7. https://doi.org/10.3389/ffgc.2024.1350888

Ma, B., Wang, Y., Ge, J., & Xie, Z. (2024). Patterns and controls of leaf litter nitrogen and phosphorus of broad-leaved tree species across and within the tropics and the extra-tropics. Agricultural and Forest Meteorology, 358, 110249. https://doi.org/10.1016/j.agrformet.2024.110249

Martins, M. A. S., Prats, S. A., Keizer, J. J., & Verheijen, F. G. A. (2024). Post-fire soil water repellency under stones and forest residue mulch versus of bare soil. Journal of Hydrology and Hydromechanics, 72(4), 413-421. https://doi.org/10.2478/johh-2024-0024

Mendoza, R. B., & Espinoza, A. (2017). Guía Técnica para el Muestreo de Suelos. Ministerio del Ambiente, 72. https://repositorio.una.edu.ni/3613/1/P33M539.pdf

Muhammad, B., Rehman, A. U. R., Mumtaz, F., Qun, Y., & Zhongkui, J. (2024). Estimation of above-ground biomass in dry temperate forests using Sentinel-2 data and random forest: a case study of the Swat area of Pakistan. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1448648

Ordóñez-Ruiz, K. M., & Ordóñez-Sánchez, L. A. (2022). Almacenamiento de biomasa y carbono en huertas urbanas de Yantaló, Perú. Revista Amazónica de Ciencias Ambientales y Ecológicas, 1(2), e352. https://doi.org/10.51252/reacae.v1i2.352

Pocomucha, V. S., Alegre, J., & Abregú, L. (2016). Análisis Socio Económico Y Carbono Almacenado En Sistemas Agroforestales De Cacao (Theobroma cacao L.) EN HUÁNUCO. Ecología Aplicada, 15(2), 107. https://doi.org/10.21704/rea.v15i2.750

Prats, S. A., Serpa, D., Santos, L., & Keizer, J. J. (2023). Effects of forest residue mulching on organic matter and nutrient exports after wildfire in North-Central Portugal. Science of The Total Environment, 885, 163825. https://doi.org/10.1016/j.scitotenv.2023.163825

Ralhan, D., Rodrigo, R., Keith, H., Stegehuis, A. I., Pavlin, J., Jiang, Y., Rydval, M., Nogueira, J., Fruleux, A., Svitok, M., Mikoláš, M., Kozák, D., Dušátko, M., Janda, P., Chaskovsky, O., Roibu, C.-C., & Svoboda, M. (2024). Tree structure and diversity shape the biomass of primary temperate mountain forests. Forest Ecosystems, 11, 100215. https://doi.org/10.1016/j.fecs.2024.100215

Singh, S. (2018). Understanding the role of slope aspect in shaping the vegetation attributes and soil properties in Montane ecosystems. Tropical Ecology , 59(3), 417-430. www.tropecol.com

Speckert, T. C., Huguet, A., & Wiesenberg, G. L. B. (2024). Afforestation induced shift in the microbial community explains enhanced decomposition of subsoil organic matter. https://doi.org/10.5194/egusphere-2024-870

Wang, S., Zhao, M., Meng, X., Chen, G., Zeng, R., Yang, Q., Liu, Y., & Wang, B. (2020). Evaluation of the Effects of Forest on Slope Stability and Its Implications for Forest Management: A Case Study of Bailong River Basin, China. Sustainability, 12(16), 6655. https://doi.org/10.3390/su12166655

Yang, B.-Y., Ali, A., Xu, M.-S., Guan, M.-S., Li, Y., Zhang, X.-N., He, X.-M., & Yang, X.-D. (2022). Large plants enhance aboveground biomass in arid natural forest and plantation along differential abiotic and biotic conditions. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.999793

Zhou, W., Sun, X., Li, S., Qu, B., & Zhang, J. (2024). How Organic Mulching Influences the Soil Bacterial Community Structure and Function in Urban Forests. Microorganisms, 12(3), 520. https://doi.org/10.3390/microorganisms12030520

UNAMAD

Descargas

Publicado

01/25/2024

Cómo citar

Ordóñez-Sánchez, L. A., Ordóñez-Ruiz , K. M., Navarro-Reátegui, J. M., & Ordóñez-Sánchez, V. H. O.-S. (2024). Biomasa del bosque natural del Centro de biodiversidad de la Universidad nacional de San Martín. GENTRYANA, 3(1), e345. https://doi.org/10.55873/gentryana.v3i1.345

Número

Sección

Artículos originales