Biomasa do bosque natural do Centro de Biodiversidade da Universidade Nacional de San Martín
DOI:
https://doi.org/10.55873/gentryana.v3i1.345Palavras-chave:
armazenamento de carbono, bosque natural, microrganismos descomponedores, solo do bosqueResumo
Conhecer a biomassa do bosque natural permite dimensionar seu valor ecológico e econômico; além disso, foco na perspectiva clara de convivência adequada. O objetivo do presente estudo foi calcular o armazenamento de carbono da biomasa, a situação do solo e os tipos de microorganismos descomponedores orgânicos do bosque natural no Cerro Escalera. Seccionado três lotes, al azar, no interior do bosque de 136 hectares, do Centro de Biodiversidade, administrado pela Universidade Nacional de San Martín, com latitude Sul -6.4607; longitude Oeste -76,2896; altitude 963 msnm. A mostra de mantillo foi analisada no laboratório de microbiologia de solos da Universidade Nacional de San Martín, para determinar a existência e o conteúdo de bactérias e fungos. A metodologia foi com diluições e siembra, em placas Petri, contendo meio de cultivo TSA (triptona soja agar) para bactérias; e, meio PDA (ágar papa dextrosa) para alimentos. Resultados, a biomassa seca do bosque natural pesa 127.849 kg ha-1 e armazena 58 t ha-1 de carbono orgânico. O solo mostra baixo conteúdo nutricional de nitrogênio (0,03%), fósforo (2,95 ppm) e potássio (53,9 ppm). O mantillo ostenta 13.833.333 unidades formadoras de colônias (ufc) de bactérias por grama de mantillo e 120.000 unidades formadoras de colônias (ufc) de hongos por grama de mantillo. Conclui-se que a biomasa do bosque almacena é de 58 t ha-1 de carbono orgânico, proveniente de 128 t ha-1 de biomasa.
Referências
Azhar, B., van der Meer, P., Sterenborg, R. F., Yahya, M. S., Razi, N., Burhanuddin, M., Rookmaker, J., Sahimi, N. S., van der Pal, W., Nobilly, F., Azam, S. A. M., Ubachs, M., Syakir, M. I., Zaki, W. M. W., Zulkipli, N. A., & Oon, A. (2024). Resilience underground: Understanding earthworm biomass responses to land use changes in the tropics. Biological Conservation, 299, 110800. https://doi.org/10.1016/j.biocon.2024.110800
Bogunović, I., & Filipović, V. (2023). Mulch as a nature-based solution to halt and reverse land degradation in agricultural areas. Current Opinion in Environmental Science & Health, 34, 100488. https://doi.org/10.1016/j.coesh.2023.100488
Carter, T. A., & Buma, B. (2024). The distribution of tree biomass carbon within the Pacific Coastal Temperate Rainforest, a disproportionally carbon dense forest. Canadian Journal of Forest Research, 54(9), 956-977. https://doi.org/10.1139/cjfr-2024-0015
Cheng, Z., Aakala, T., & Larjavaara, M. (2023). Elevation, aspect, and slope influence woody vegetation structure and composition but not species richness in a human-influenced landscape in northwestern Yunnan, China. Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1187724
Corral-Lugo, A., Morales-García, Y. E., Pazos-Rojas, L. A., Ramírez-Valverde, A., Martínez-Contreras, R. D., & Muñoz-Rojas, J. (2012). Cuantificación de bacterias cultivables mediante el método de “Goteo en Placa por Sellado (o estampado) Masivo”. Revista Colombiana de Biotecnología, 14(2), 147-156. http://www.revistas.unal.edu.co/index.php/biotecnologia/article/view/37416/40417
Egeta, D. (2024). The contribution of tropical forests to climate change mitigation. Biomass estimation techniques a necessary tool in their assessment. Journal of the Selva Andina Biosphere, 12(2), 81-89. https://doi.org/10.36610/j.jsab.2024.120200081
Fragoso-Medina, M. del C., Navarrete-Segueda, A., Ceccon, E., & Martínez-Ramos, M. (2024). Effects of the forests-agriculture conversion on the availability and diversity of forest products in a neotropical rainforest region. Trees, Forests and People, 15, 100481. https://doi.org/10.1016/j.tfp.2023.100481
Hernando, A., Puerto, L., Mola-Yudego, B., Manzanera, J., García-Abril, A., Maltamo, M., & Valbuena, R. (2019). Estimation of forest biomass components using airborne LiDAR and multispectral sensors. iForest - Biogeosciences and Forestry, 12(2), 207-213. https://doi.org/10.3832/ifor2735-012
Ispikoudis, S., Zianis, D., Tziolas, E., Damianidis, C., Rapti, D., Tsiros, E., Michalakis, D., & Karteris, A. (2024). Assessment of Forest Biomass and Carbon Storage in Habitat 9340 Quercus ilex L. to Support Management Decisions for Climate Change Mitigation. Sustainability, 16(4), 1403. https://doi.org/10.3390/su16041403
Kale, R. D., & Karmegam, N. (2010). The Role of Earthworms in Tropics with Emphasis on Indian Ecosystems. Applied and Environmental Soil Science, 2010, 1-16. https://doi.org/10.1155/2010/414356
Kassaye, M., Derebe, Y., Kibrie, W., Debebe, F., Emiru, E., Gedamu, B., & Tamir, M. (2024). The effects of environmental variability and forest management on natural forest carbon stock in northwestern Ethiopia. Ecology and Evolution, 14(6). https://doi.org/10.1002/ece3.11476
Kumar, P., Kumar, A., Patil, M., Hussain, S., & Singh, A. N. (2024). Factors influencing tree biomass and carbon stock in the Western Himalayas, India. Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1328694
Lapeyre, T., Alegre, J., & Arévalo, L. (2004). Determinación de las Reservas de Carbono de la Biomasa Aérea, en diferentes Sistemas de Uso de la Tierra en San Martín, Perú. Ecología Aplicada, 3(1,2), 36-44. http://www.scielo.org.pe/scielo.php?pid=S1726-22162004000100006&script=sci_abstract
Liu, H., Dong, X., Zhang, Y., Qu, H., Ren, Y., Zhang, B., & Gao, T. (2024). Estimation of biomass in various components of Pinus koraiensis based on Bayesian methods. Frontiers in Forests and Global Change, 7. https://doi.org/10.3389/ffgc.2024.1350888
Ma, B., Wang, Y., Ge, J., & Xie, Z. (2024). Patterns and controls of leaf litter nitrogen and phosphorus of broad-leaved tree species across and within the tropics and the extra-tropics. Agricultural and Forest Meteorology, 358, 110249. https://doi.org/10.1016/j.agrformet.2024.110249
Martins, M. A. S., Prats, S. A., Keizer, J. J., & Verheijen, F. G. A. (2024). Post-fire soil water repellency under stones and forest residue mulch versus of bare soil. Journal of Hydrology and Hydromechanics, 72(4), 413-421. https://doi.org/10.2478/johh-2024-0024
Mendoza, R. B., & Espinoza, A. (2017). Guía Técnica para el Muestreo de Suelos. Ministerio del Ambiente, 72. https://repositorio.una.edu.ni/3613/1/P33M539.pdf
Muhammad, B., Rehman, A. U. R., Mumtaz, F., Qun, Y., & Zhongkui, J. (2024). Estimation of above-ground biomass in dry temperate forests using Sentinel-2 data and random forest: a case study of the Swat area of Pakistan. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1448648
Ordóñez-Ruiz, K. M., & Ordóñez-Sánchez, L. A. (2022). Almacenamiento de biomasa y carbono en huertas urbanas de Yantaló, Perú. Revista Amazónica de Ciencias Ambientales y Ecológicas, 1(2), e352. https://doi.org/10.51252/reacae.v1i2.352
Pocomucha, V. S., Alegre, J., & Abregú, L. (2016). Análisis Socio Económico Y Carbono Almacenado En Sistemas Agroforestales De Cacao (Theobroma cacao L.) EN HUÁNUCO. Ecología Aplicada, 15(2), 107. https://doi.org/10.21704/rea.v15i2.750
Prats, S. A., Serpa, D., Santos, L., & Keizer, J. J. (2023). Effects of forest residue mulching on organic matter and nutrient exports after wildfire in North-Central Portugal. Science of The Total Environment, 885, 163825. https://doi.org/10.1016/j.scitotenv.2023.163825
Ralhan, D., Rodrigo, R., Keith, H., Stegehuis, A. I., Pavlin, J., Jiang, Y., Rydval, M., Nogueira, J., Fruleux, A., Svitok, M., Mikoláš, M., Kozák, D., Dušátko, M., Janda, P., Chaskovsky, O., Roibu, C.-C., & Svoboda, M. (2024). Tree structure and diversity shape the biomass of primary temperate mountain forests. Forest Ecosystems, 11, 100215. https://doi.org/10.1016/j.fecs.2024.100215
Singh, S. (2018). Understanding the role of slope aspect in shaping the vegetation attributes and soil properties in Montane ecosystems. Tropical Ecology , 59(3), 417-430. www.tropecol.com
Speckert, T. C., Huguet, A., & Wiesenberg, G. L. B. (2024). Afforestation induced shift in the microbial community explains enhanced decomposition of subsoil organic matter. https://doi.org/10.5194/egusphere-2024-870
Wang, S., Zhao, M., Meng, X., Chen, G., Zeng, R., Yang, Q., Liu, Y., & Wang, B. (2020). Evaluation of the Effects of Forest on Slope Stability and Its Implications for Forest Management: A Case Study of Bailong River Basin, China. Sustainability, 12(16), 6655. https://doi.org/10.3390/su12166655
Yang, B.-Y., Ali, A., Xu, M.-S., Guan, M.-S., Li, Y., Zhang, X.-N., He, X.-M., & Yang, X.-D. (2022). Large plants enhance aboveground biomass in arid natural forest and plantation along differential abiotic and biotic conditions. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.999793
Zhou, W., Sun, X., Li, S., Qu, B., & Zhang, J. (2024). How Organic Mulching Influences the Soil Bacterial Community Structure and Function in Urban Forests. Microorganisms, 12(3), 520. https://doi.org/10.3390/microorganisms12030520

Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Luis Alberto Ordóñez-Sánchez, Karina Milagros Ordóñez-Ruiz , Jorge Max Navarro-Reátegui, Victor Hugo Ordóñez-Sánchez

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Los autores, en conocimiento que la revista GENTRYANA tiene una política de Acceso Abierto (Open Access) aceptan las condiciones de la LICENCIA Creative Commons Atribución 4.0 Internacional (CC BY 4.0).