Improving the process of detecting visual defects in chestnuts for export purposes
DOI:
https://doi.org/10.55873/rad.v4i1.367Keywords:
automation, color spaces, detection and identification, first-order descriptor, computer visionAbstract
An important economic activity in countries such as Peru, Bolivia, and Brazil is the trade of nuts, such as chestnuts. Before export, quality control is required, including the assessment of ripeness and the detection and identification of defects, damage, or diseases. This process is based on the product's external characteristics, using color, shape, size, and texture descriptors. The aim is to automate the detection and identification of visual defects in objects such as chestnuts. The product is divided into two regions (dark and light) due to the color similarity between the object and the defects. Detection is performed through texture analysis in each region, using the Detect Defect algorithm (Alg. 2 and 3) and the First-Order descriptor (Alg. 5). To identify specific defects, color, size, and texture descriptors are applied through Color and Size Segmentation (Alg. 4). The proposal was implemented and tested on a database, achieving an efficiency rate of 97.90% and a processing time of 17 to 25 ms per image, outperforming the algorithm of the project (Proy.PIPEA_134, 2013), which reached an efficiency of 91.06% and 43 ms of processing.
Downloads
References
Compac. (2016). Compac Sorting Equipment, Technology for Apples. Apple graders, sizers and sorting machines with electronic weight sizing plus quality & blemish grading. Computerized grading of Apples and Apple packing equipment and solutions. http://www.compacsort.comDatabase –Chestnut. (2017). Database Chestnut –LARVIC, Research Project: Development of mechatronic components based on intelligent artificial vision for the optimization of the selection process of chestnuts. Machine Learning Repository. https://www.dropbox.com/sh/1u7c8hhay5vxlhz/AABdLm4-cyLaODLiIosI0-7-a?dl=0Ganiron, T. J. (2014). Size Properties of Mangoes using Image Analysis. International Journal of Bio-Science and Bio-Technology, 6(2), 31-42. https://doi.org/10.14257/ijbsbt.2014.6.2.03Guzmán, R. (2015). Mejoramiento de Imágenes Digitales para la Clasificación de Defectos de Granos de CaféVerde.Universidad Nacional de San Agustín.Mayhua, A. G. (2015). Clasificación Automática de Defectos en la Producción de Tejidos en Lana de Alpaca: Un Enfoque Utilizando Redes Neuronales y Descriptores de Forma. Universidad Nacional de San Agustín.Narendra, V. G., & Hareesh, K. S. (2014). Computer Vision System to Estimate Cashew Kernel (White Wholes) Grade Colour and Geometric Parameters. Journal of Food Processing & Technology, 05(06). https://doi.org/10.4172/2157-7110.1000336Proy.PIPEA_134. (2013). Proyecto de Investigación: Desarrollo de componentes mecatrónicos basados en visión artificial inteligente para la optimización del proceso de selección de castañas.Contrato PIPEA-134-2010 y ejecutado por la Universidad Nacional de San Agustín y la Empresa El Bosque E.I.R.L. Catedra CONCYTEC en TIC‘s –UNSA.Qureshi, W. S., Satoh, S., Dailey, M. N., & Ekpanyapong, M. (2024). Dense segmentation of textured fruits in video sequences. IEEE Xplore, 12, 193263-193283. https://ieeexplore.ieee.org/document/7294963Ripas-Mamani, R., Cervantes-Jilaja, C., Rosas-Cuevas, Y., Patino-Escarcina, R. E., & Barrios-Aranibar, D. (2016). A Semi-Automated Approach for Recognizing Moving Targets Using a Global Vision System. 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), 13-18. https://doi.org/10.1109/LARS-SBR.2016.10
VRC. (2016). Vision Robotics Corporation. http://visionrobotics.com
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Cervantes-Jilaja, Claudia

This work is licensed under a Creative Commons Attribution 4.0 International License.



