Data analysis and forecast of Covid-19 cases in the Madre de Dios Department of Peru using LSTM techniques
DOI:
https://doi.org/10.55873/rad.v1i2.195Keywords:
Covid-19, LSTM, infected, pandemic, forecastAbstract
Currently, Covid-19 is causing great losses worldwide, which is why different works that allow predicting or forecasting the behavior of the number of infected using forecasting techniques within the Artificial Intelligence field are allowing control measures to be taken in the different countries. In this work, a deep learning model was proposed to forecast daily cases in the regions of Madre de Dios. The data used belongs to the covid-19 open data set, from the Peruvian Ministry of Health (MINSA). The data set includes the periods from the beginning of March 2020 to the end of December 2021. An LSTM was used using variables of Date, Department, Province, District, Cases, IP. ID and with a window size of 5 days, an accuracy of 94.67% was obtained with the training data and 92.31%.
Downloads
References
Aguilar I., L., Ibáñez-Reluz, M., Z. Aguilar, J. C., Zavaleta-Aguilar, E. W., & Aguilar, L. A. (2021). Forecasting SARS-CoV-2 in the peruvian regions: a deep learning approach using temporal convolutional neural networks. Selecciones Matemáticas, 8(1), 12–26. https://doi.org/10.17268/sel.mat.2021.01.02
Arora, P., Kumar, H., & Panigrahi, B. K. (2020). Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India. Chaos, Solitons and Fractals Fractals, 139, 110017. https://doi.org/10.1016/j.chaos.2020.110017
Ayyoubzadeh, S. M., Ayyoubzadeh, S. M., Zahedi, H., Ahmadi, M., & R Niakan Kalhori, S. (2020). Predicting COVID-19 Incidence Through Analysis of Google Trends Data in Iran: Data Mining and Deep Learning Pilot Study. JMIR Public Health and Surveillance, 6(2), e18828. https://doi.org/10.2196/18828
Cocconi, M., & Roark, G. (2020). Predicción de contagios, recuperaciones y casos fatales de COVID-19 en Argentina a través del uso de modelos de regresión no lineal como base para la planificación de recursos hospitalarios. XIII COINI 2020 UTN FRBA - Congreso Argentino Internacional de Ingeniería Industrial.
Cruz-Mendoza, I., Quevedo-Pulido, J., & Adanaque-Infante, L. (2020). LSTM perfomance analysis for predictive models based on Covid-19 dataset. 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 1–4. https://doi.org/10.1109/INTERCON50315.2020.9220248
Fanelli, D., & Piazza, F. (2020). Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons and Fractals, 134, 109761. https://doi.org/10.1016/j.chaos.2020.109761
Franco, E. F., Calderón, V. V., & Ramos, R. T. (2020). Modelos de predicción del impacto y evolución del COVID-19 en República Dominicana. Ciencia, Ambiente y Clima, 3(1), 5–21. https://doi.org/10.22206/cac.2020.v3i1.pp5-21
Garrido, J. M., Martínez-Rodríguez, D., Rodríguez-Serrano, F., Pérez-Villares, J. M., Ferreiro-Marzal, A., Jiménez-Quintana, M. M., & Villanueva, R. J. (2022). Mathematical model optimized for prediction and health care planning for COVID-19. Medicina Intensiva (English Edition), 46(5), 248–258. https://doi.org/10.1016/j.medine.2022.02.020
Kafieh, R., Arian, R., Saeedizadeh, N., Amini, Z., Serej, N. D., Minaee, S., Yadav, S. K., Vaezi, A., Rezaei, N., & Haghjooy Javanmard, S. (2021). COVID-19 in Iran: Forecasting Pandemic Using Deep Learning. Computational and Mathematical Methods in Medicine, 2021, 1–16. https://doi.org/10.1155/2021/6927985
Khakharia, A., Shah, V., Jain, S., Shah, J., Tiwari, A., Daphal, P., Warang, M., & Mehendale, N. (2021). Outbreak Prediction of COVID-19 for Dense and Populated Countries Using Machine Learning. Annals of Data Science, 8(1), 1–19. https://doi.org/10.1007/s40745-020-00314-9
Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 139, 110059. https://doi.org/10.1016/j.chaos.2020.110059
Mendieta, J. F. M., Cortes Cortes, M. E., Cortes Iglesias, M., Perez Fernandez, A. del C., & Manzano Cabrera, M. (2020). Study on predictive models for COVID-19 in Cuba. Medisur-Revista De Ciencias Medicas De Cienfuegos, 18(3), 431–442. https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/grc-741565
Shinde, G. R., Kalamkar, A. B., Mahalle, P. N., Dey, N., Chaki, J., & Hassanien, A. E. (2020). Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art. SN Computer Science, 1(4), 197. https://doi.org/10.1007/s42979-020-00209-9
Sujath, R., Chatterjee, J. M., & Hassanien, A. E. (2020). A machine learning forecasting model for COVID-19 pandemic in India. Stochastic Environmental Research and Risk Assessment, 34(7), 959–972. https://doi.org/10.1007/s00477-020-01827-8
Wang, P., Zheng, X., Ai, G., Liu, D., & Zhu, B. (2020). Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran. Chaos, Solitons and Fractals, 140, 110214. https://doi.org/10.1016/j.chaos.2020.110214
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Jose Carlos Navarro-Vega, Nelly Jacqueline Ulloa-Gallardo, Diego Raphael Paz-Bustamante, Diego Gustavo Zegarra-Conde, Wilder Nina-Choquehuayta
This work is licensed under a Creative Commons Attribution 4.0 International License.