Optimization Impact of Business Intelligence on Improving Decision Making: A Systematic Review of the Literature

Authors

DOI:

https://doi.org/10.55873/rad.v4i2.370

Keywords:

Business Intelligence (BI), Data-driven, Decision-making, Analytical tools, Technological adoption

Abstract

Business Intelligence (BI) has become a key driver of digital transformation by enabling organizations to turn large volumes of data into faster, more accurate, and strategically informed decisions. This systematic review examines its impact on organizational management, highlighting tools such as Power BI, Tableau, and Pentaho. Power BI dominates in Latin America due to its accessibility and integration, Tableau excels in advanced visualization, and Pentaho offers flexibility through open source, although most literature remains focused on Power BI. The study applies frameworks such as Data-Driven Decision Making (DDDM), the Technology Acceptance Model (TAM), and the TOE approach to explain adoption across technological, organizational, and environmental factors. Despite clear benefits, challenges persist, including resistance to change, limited analytical skills, poor data quality, high implementation costs, and cybersecurity risks. Recommended strategies include specialized training, investment in scalable infrastructure, and promoting a data-driven culture to ensure BI becomes a sustainable competitive advantage.

Downloads

Download data is not yet available.

References

.Ahumada Tello, E., & Perusquia Velasco, J. M. A. (2016). Inteligencia de negocios: Estrategia para el desarrollo de competitividad en empresas de base tecnológica. Contaduría y Administración, 61(1), 127–158. https://doi.org/10.1016/j.cya.2015.09.006

Aldaghi, T., & Muzik, J. (2024). Multicriteria decision-making in diabetes management and decision support: Systematic review. JMIR Medical Informatics, 12. https://doi.org/10.2196/47701

Alvarado-Apodaca, J., Ramírez-Noriega, A., Tripp-Barba, C., Martínez-Ramírez, Y., & Álvarez Sánchez, I. N. (2023). Inteligencia de negocios en América Latina: una revisión sistemática de literatura. Revista de Investigación en Tecnologías de la Información, 11(24), 76–89. https://doi.org/10.36825/riti.11.24.007

Baldeón-Palpa, M. J., Medina-Romero, M. Á., Gavilanes-Carranza, E. A., & Burbano-Ronquillo, M. B. (2025). Inteligencia de Negocios para la Toma de Decisiones. Multidisciplinary Latin American Journal (MLAJ), 3(1), 43–58. https://doi.org/10.62131/MLAJ-V3-N1-003

Bravo-Bravo, I. F., Rizzo-Anastacio, R. E., & Monroy-Baquerizo, C. A. (2024). La influencia de la toma de decisiones fundamentada en datos en la administración contemporánea. Multidisciplinary Collaborative Journal, 2(2), 17–29. https://doi.org/10.70881/mcj/v2/n2/33

Clavijo-Cáceres, J. L., Hurtado-Guevara, R. F., Casanova-Villalba, C. I., & Estefano-Almeida, M. A. (2024). El impacto de la inteligencia artificial en decisiones administrativas basado en revisión de literatura científica. Multidisciplinary Collaborative Journal, 2(1), 39–51. https://doi.org/10.70881/mcj/v2/n1/30

García Estrella, C. W., Barón Ramírez, E., & Sánchez Gárate, S. K. (2021). La inteligencia de negocios y la analítica de datos en los procesos empresariales. Revista Científica de Sistemas e Informática, 1(2), 38–53. https://doi.org/10.51252/rcsi.v1i2.167

García-Jiménez, A. de J., Aguilar-Morales, N., Hernández-Triano, L., & Lancaster-Díaz, E. (2021). La inteligencia de negocios: Herramienta clave para el uso de la información y la toma de decisiones empresariales. Revista de Investigaciones Universidad del Quindío, 33(1), 132–139. https://doi.org/10.33975/riuq.vol33n1.514

García Peñaloza, J. E., Loaiza Vera, J. L., & Rivera Montes, J. E. (s. f.). La inteligencia artificial en el campo de los negocios: Un análisis bibliométrico en Scopus.

Haro Sarango, A. F., Martínez Yacelga, A. P., Nuela Sevilla, R. M., Criollo Sailema, M. E., & Pico Lescano, J. C. (2023). Inteligencia de negocios en la gestión empresarial: un análisis a las investigaciones científicas mundiales. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 4(1). https://doi.org/10.56712/latam.v4i1.493

Marocco, S., Barbieri, B., & Talamo, A. (2024). Exploring facilitators and barriers to managers’ adoption of AI-based systems in decision making: A systematic review. AI, 5(4), 123. https://doi.org/10.3390/ai5040123

Rosado-Martínez, S. A., Alvarado-Bastidas, E. A., & Gutiérrez-Bastidas, J. O. (2024). The use of Big Data and Business Intelligence in the elaboration of strategic decisions for companies in the industrial sector. https://doi.org/10.63688/exgy3420

Zhu, X., Meng, X., & Zhang, M. (2021). Application of multiple criteria decision making methods in construction: A systematic literature review. Journal of Civil Engineering and Management, 27(6), 372–403. https://doi.org/10.3846/jcem.2021.15260

Published

2025-07-25

How to Cite

Fasanando-Trigoso, D. C., & Ramírez-Pezo, Y. E. (2025). Optimization Impact of Business Intelligence on Improving Decision Making: A Systematic Review of the Literature. Revista Amazonía Digital, 4(2), e370. https://doi.org/10.55873/rad.v4i2.370

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.